

Computer Vision

Exercise Session 3

Assignment 3

4 Tasks

- Harris corner detection
- Image patch extraction
- Feature matching
- Comparison with SIFT.

Harris Corner Detector

- Compute intensity gradients in x- and ydirection
- Blur images to get rid of noise
- Compute Harris response
- Threshold the response image
- Apply non-maximum suppression

Image Intensity Gradients

- 1st derivative of image intensities in 2D
- Rate of change of gray scale value at one pixel
- Simplest way, compute:

$$I_{x} = \frac{p_{x+1,y} - p_{x-1,y}}{2}$$

$$I_{y} = \frac{p_{x,y+1} - p_{x,y-1}}{2}$$

...or use gradient() in MATLAB

Blurring an Image

- Check the following functions:
 - fspecial('gaussian')
 - imfilter()

Harris Response

First the Harris Matrix is calculated from the gradients

the gradients
$$H = \sum_{\text{neighbours}} \begin{bmatrix} I_X^2 & I_XI_Y \\ I_XI_Y & I_Y^2 \end{bmatrix}$$
.

Using this matrix, the response is given by:

$$K = \frac{det(H)}{trace(H)}$$

Harris Response Histogram

Non-maximum Suppression

- For every pixel above the threshold, check the surrounding pixels inside a window for the maximum response intensity
- If the center pixel response is smaller than a pixel inside the window, remove the center pixel from the corner candidates

Center pixel has maximum response inside window Center pixel not maximum, suppress

Patch Descriptor

For each keypoint, extract an image patch of 9x9 pixels and store it as descriptor vector

Matching Descriptors

- For each keypoint in one image find the corresponding keypoint in the other image
- Compute the sum of squared differences (SSD) between the two descriptor vectors d_A and d_B

$$SSd = \sum_{i} (d_{A,i} - d_{B,i})^{2}$$

Small differences denote a high similarity

SIFT

- Download and install VLFeat, SIFT feature extractor from Andrea Vedaldi (<u>http://www.vlfeat.org</u>)
- Go through the tutorial and learn how to extract, match and visualize SIFT features
- Compare the result of your implementation with the one obtained using SIFT features

Hand-In

- Write up a short report explaining the main steps of your implementation
- Include images showing the final results
- Include both source code and report and send it to nikolay.savinov@inf.ethz.ch

