Exercise to Visual Computing

• Two sessions, same content:
 • Tuesday, 13:00 – 16:00
 • Thursday, 09:00 – 12:00

• Two parts:
 — Computer Vision: Until mid November (Head TA: Philipp Lindenberger)
 — Computer Graphics: Until Christmas (Head TA: Rafael Wampfler)

• Tuesday morning: Release of exercise

• Thursday evening: Release of solution

• Prerequisites: Python (Computer Vision), C++ (Graphics)
Exercise 1: Today’s schedule

• First part (~ 45min):
 • Recap on useful concepts from the lecture
 • Present coding assignment
 • Present sample exam question

• Second part (~ 1h 45min):
 • Individual work on coding and exam question
 • We go around to help you when you need help!

• Third part (~ 15 min):
 • We go over the solutions!
What is a digital image?

- Image is a Tensor: \([H \times W \times 3]\)
- Each pixel is a rgb vector \([0 \ldots 255] \times 3\) (“color channels”)
- Coordinate system (x/y flipped):
Tutorial 1 – Segmentation
Background Removal

Institute of Visual Computing
Thresholding example

Thresholding example

T=50

T=100

T=150
The Confusion Matrix

TP

FP

TN

FN

Actual Values

Positive

Negative

Positive

True Positive

False Positive

Negative

False Negative

True Negative
The ROC curve

True positive count
\[P = TP + FN \]

False positive count
\[N = FP + TN \]
Graylevel histograms
Graylevel histograms
Region growing

- Start from a seed point
- Add neighboring pixels that share some properties.
- Iterate with the newly added pixels.
Connected regions

• Labels each connected component of a binary image with a separate number.
Exercise 1 – Background Subtraction
Bluescreen / Greenscreen

http://www.iwatchstuff.com/images/2006/01/superman-greenscreen.jpg

http://www.theavclub.tv/behind_the_scenes/greenscreen/
Bluescreen

- Represent background with a single color value
 - Classification based on absolute distances
 \[|[r, g, b] - [r_0, g_0, b_0]| < t. \]
Bluescreen

• Represent background with a set of color values
 – Classify new RGB values based on Mahalanobis distance
 \[(x - \mu)^T \Sigma^{-1} (x - \mu) > t\]

• Covariance Matrix
 \[\Sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]\]

• Estimation from n data points
 \[\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T\]
Pixel-wise Color Model

- Mean and covariance for each pixel
- One threshold for all pixels (Mahalanobis distance)
Pixel-wise Color Model
Setting up the environment

Two options:

- GitHub + jupyter notebooks run locally

 https://github.com/tavisualcomputing/viscomp2023

- Google Colab: Python notebook in the cloud
