Visibility and Shadows

Prof. Dr. Markus Gross
Visibility

- The visibility problem
 - Some parts of some surfaces are occluded
Visibility

- Solution 1: Painter’s algorithm
 - Render objects/polygons from furthest to nearest
Visibility

- Solution 1: Painter’s algorithm
 - Problems

Cyclic Overlaps Intersections
Visibility

• Solution 2: Z-Buffering
 – Store depth to the nearest object for each pixel
Visibility

- Solution 2: Z-Buffering - algorithm
 1. Initialize all z values to ∞
 2. For each polygon
 - If z value of a pixel for this polygon is smaller than the stored z value, replace the stored z value
Visibility

- Solution 2: Z-Buffering - algorithm
Visibility

- Solution 2: Z-Buffering - algorithm
Visibility

• Solution 2: Z-Buffering
 – Problem: limited resolution
 – Resolution is non-linear
 – Set near plane far from the camera
Shadows

• Why are shadows important?
 – Depth cue
Shadows

• Why are shadows important?
 – Scene lighting

Light Position

Point vs. Area Light
Shadows

• Why are shadows important?
 – Realism
Basic Shadows

• Planar shadows
 – Draw projection of the object on the ground
 – Limitations
 • Self shadows
 • Shadows on other objects
 • Curved surfaces
Basic Shadows

• Projective texture shadows
 – Separate obstacle and receiver
 – Compute b/w image of the obstacle from light
 – Use image as projective texture
 – Limitations
 • Need to specify obstacle & receiver
 • No self-shadows
Shadow Maps

• In high-end production software and games
Shadow Maps

• Compute the depths from the light
• Compute the depths from the camera
Shadow Maps

• For each pixel on the camera plane
 – Compute the point in world coordinates
 – Project point onto the light plane
 – Compare $d(x_L)$ (shadow map) and z_L
 – If $d(x_L) < z_L$, x is in shadow
Shadow Maps

Depth map rendered from the light

Rendering from the camera
Shadow Maps

- Limitations – Bias
 - For a visible point $d(x_L) < z_L$
 - How to avoid self-shadowing?
 - Add bias
 $$d(x_L) + bias < z_L$$
Shadow Maps

- Limitations – Bias
 \[d(x_L) + bias < z_L \]
 – Choosing a good bias can be very tricky

Correct image Not enough bias Way too much bias
Shadow Maps

- Limitations – Field of view
 - A point to shadow can be outside the field of view of shadow map
 - Use cubical shadow map or spot lights
Shadow Maps

• Limitations – Aliasing
 – Undersampling of the shadow map
Shadow Maps

• Filtering
 – Should we filter depth? No.
 – Instead, filter the result of the test
 \[d(x_L) + \text{bias} < z_L \]
 – Take a weighted average of comparisons
Shadow Maps

• Filtering
 – Take a weighted average of comparisons
 – Bigger filter produces fake soft shadows
 – Setting bias is tricky
Shadow Volumes

• Explicitly represent the volume of space in shadow
• If a polygon is inside the volume, it is in shadow
• Similar to clipping
• Naïve implementation:
 \[O(\text{#polygons} \times \text{#lights}) \]
Shadow Volumes

• Algorithm
 – Shoot a ray from the eye
 – Incre-/decrement a counter each time boundary of shadow volume is intersected
 – If counter > 0, primitive is in shadow
Shadow Volumes

- Algorithm
 - Shoot a ray from the eye
 - Increment/decrement a counter each time boundary of shadow volume is intersected
 - If counter = 0, primitive is not in shadow
Shadow Volumes

• Optimization:
 – Use silhouette edges only (where a back-facing & front-facing polygon meet)
Shadow Volumes

• Limitations
 – Introduces a lot of new geometry
 – Expensive to rasterize long skinny triangles
 – Objects must be watertight to use the silhouette optimization
 – Rasterization of polygons sharing an edge must not overlap & not have gap
Comparisons

<table>
<thead>
<tr>
<th>Features/Limitations</th>
<th>Planar Fake Shadows</th>
<th>Projective Texture Shadows</th>
<th>Shadow Maps</th>
<th>Shadow Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows objects to cast shadows on themselves (self-shadowing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permits shadows on arbitrary surfaces (i.e. curved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generates extra geometric primitives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited resolution of intermediate representation can result in jaggy shadow artifacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>