Computer Graphics

Acceleration Data Structures

| I s 1 vyyy.U
Pl e A "‘_‘.. .

Prof. Dr. Markus Gross
grossm@inf.ethz.ch

2.

%® RESEARCH
Eidgenossische Technische Hochschule Ziirich S T U DI O S
Swiss Federal Institute of Technology Zurich

mailto:grossm@inf.ethz.ch

The Quest for Realism

ealism through geometric complexity

The Quest for Realism

* Realism through gmetric complexiy

=

The Quest for Realism

* Realism through geometric complexity

Overview

5

Overview

4 p
Fewer intersection
computations
\ y
4 p

* uniform grids

* binary space partition
(BSP-tree), KD-tree,
Octree

* Bounding volume
hierarchies (BVH)

N\ Y

Ray Tracing Acceleration

» Ray-surface intersection Is at the core of every
ray tracing algorithm

» Brute force approach _‘

— intersect every ray with ' -
every primitive

— many unnecessary

ray-surface
Intersection tests

Ray Tracing Cost

“the time required to compute the intersections of rays and
surfaces is over 95 percent’
—Whitted 1980

Cost = O(Nx*Ny-No)
— (number of pixels) * (hnumber of objects)
— Assumes 1 ray per pixel

Example: 1000x1000 image of a scene with 1000 triangles
— Cost is (at least) 10° ray-triangle intersections

Typically measured per ray:
— Naive: O(N,) - linear with number of objects

O(N,) Ray Tracing (The Problem)

s - TR
8 primitives — 3 seconds 50K trees each with 1M polygons = 50B polygons — 594 years!

Sub-linear Ray Tracing

50K trees each with 1M polygons = 50B polygons — 11 minutes
300,000,000x speedup!

10

Acceleration Technigues

» Spatial Subdivision
* ODbject Subdivision

11

AXxIs Aligned Bounding Boxes

struct AABB

{ mdax

Vector3 min;
Vector3 max;

%

min

12

Ray-AABB Intersection

e |ntersection of sl
O, + ta:ld:r: — Lmin

Oy + ta:'de — Lmax

|

abs

Lmin — Og
te1 = q e
T

repeat for : tyl,tyg,tzl,tzg

bmin |— Max (txla tyla tzl)

bmae| = MIN (tx27 ty27 tz2)

hit if: ¢, < trax

x slabs: solve for t,1, 1.9

ajmaac

d,

if tp1 > tro @ swap(te1,ts2)

Xmin

Xmax

max

Ixl

min

13

Ray-AABB Intersection

tmin

>

tm ax

Xmax

4 y2

14

Ray-AABB Intersection

tmin

<

tm ax

15

Spatial Sorting

* Preprocess
— Decompose space into disjoint regions
— Store pointers to overlapping objects within each region

* Rendering
— Traverse through regions overlapping the ray
— Intersect objects in each region until a hit is found

16

Uniform Grids

* Preprocessing
— compute bounding box

— determine grid resolution |_‘

(often ~ 33/n)

17

Uniform Grids

Preprocessing

compute bounding box

determine grid resolution
(often ~ 33/n)

Insert objects into cells

Rasterize bounding box

Prune empty cells

Store reference for each
object in cell

18

Object/Object Intersections

* |n a ray tracer we need to intersect:
— Rays, planes
— Spheres, cylinders, cones
— Triangles/Polygons
— AXis alighed & oriented bounding boxes
— etc.

* Implementation reference
— http://www.realtimerendering.com/intersections.htmi

19

http://www.realtimerendering.com/intersections.html

Uniform Grids

* Traversal
— Incrementally rasterize

ray

— compute Iintersection

~

with objects in each cell

— stop when Intersection

found In current voxel

20

Uniform Grids

» Comparison: brute-
force

— Intersect ray with every .

primitive
— take closest intersection /-/

21

Uniform Grid Efficiency

6321 triangles

Brute force: 6321 intersection tests per ray (total = 3,710,882,127)
Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)

22

Uniform Grids

« Advantages
— Easy to code, building data structure Is fast

» Disadvantages
— Uniform cells do not adapt to non-uniform

SCenes

* Teapot in a stadium problem

— Hierarchical grids

23

Hierarchical Grid Efficiency

Brute force: 6321 intersection tests per ray (total = 3,710,882,127)
Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)
2-level grid: 12.05 intersection tests per ray (total = 7,072,774)

24

Complex Geometry

e (Grass

render time: 7 minutes

25

Visual Break

Andreas Bystrom

26

A Complex Scene

245 billion polys. 250,000 instances.

27

Spatial Hierarchies

» Classical divide-and-conquer approach
» Several variations

A\ 4

OcCtlree

| 4

P

| 4

kd-tree

bsp-tree

28

KD-Trees

* Preprocessing
— compute bounding box

29

KD-Trees

* Preprocessing
— compute bounding box

— recursively split cell using |_‘
axis-aligned plane

— until termination criteria
e.g. maximum depth or

minimum number of
objects

30

KD-Trees

* Preprocessing
— binary tree structure

root

e \
nodos / \ / \
leaf nodes / \

only leaf nodes store reference to geometry!

31

KD-Trees

* Internal nodes store
— split axis: x-, y-, or z-axis
— split position: coordinate of split plane along
axis
— children: reference to child nodes
» Leaf nodes store
— list of primitives
— optionally: mailboxing information

32

KD-Trees

* Traversal
— top-down recursion

internal node — split

33

KD-Trees

* Traversal
— top-down recursion

N

internal node — split

34

KD-Trees

* Traversal
— top-down recursion

leaf node — intersect

35

KD-Trees

* Traversal
— top-down recursion

‘/‘\C
/

O

internal node — split

tmin

36

KD-Trees

* Traversal
— top-down recursion

C/‘\C
Q/ O/

leaf node — intersect

tmin

tmax

37

KD-Trees

* Traversal
— top-down recursion

C/‘\C
/N /

leaf node — intersect

L

el

=

tmin

38

i=
=

39

Comparison

uniform grid

e O

tmin

=

v

kd-tree

40

KD-Tree Efficiency

Total intersection tests

Intersection tests / ray

Brute force 9,986,402,697 6321.00
depth=8, mo=10 111,204,795 70.38
depth=16, mo=8 11,361,140 7.19
depth=24, mo=8 9,930,604 6.28
depth=24, mo=4 6,350,655 4.02
depth=32, mo=2 4,426,580 2.80

Visual Break

SxrgrRmNEIY RS YS RNy s

*,"
-

: -_m: " B, ——
! - :

BT

a“.““ilm

|
i A l
ol A plot o e v e Jae N
MRS S TR SIE o o R ‘tﬂ.., atiieh e

42

Octrees

* Preprocessing
— compute bounding box

— recursively subdivide
cells into 8 equal sub-
cells

— until termination criteria

43

Octrees

 Traversal
— Similar to kd-trees

» Easier to implement
* Cheaper costs for

— Insertion
— Deletion

» Generally less effective
division of space

=

i, e

T

44

General BSP-Trees

* Preprocessing
— compute bounding box

— recursively split space I_‘
using arbitrary planes

45

Comparison

» Spatial subdivision
based on divide-and-
conguer
— Octree

» fixed splitting operation
— Kd-tree

» fixed plane orientation,
variable position & axis

— BSP tree
 arbitrary planes

flexibility
fewer Iintersections

<

complexity

46

X
©
O
—

an

Visua

Bounding Volume Hierarchies

 Alternative divide-and-conquer method

» Spatial sorting

— Decompose space Into disjoint regions &
assign objects to regions

* Bounding volumes

— Decompose objects into (overlapping) sets &
bound using simple volumes for fast rejection

48

Bounding Volume Hierarchies

* Bounding Volumes
— Spheres

49

Bounding Volume Hierarchies

* Bounding Volumes
— Spheres
— Axis-aligned bounding box (AABB), most

common
PN \\

Bounding Volume Hierarchies

* Bounding Volumes
— Spheres

— Axis-aligned bounding box (AABB), most
common

— Oriented bounding box (OBB)

N "
N\

51

More Bounding Volume Hierarchies

Bounding Volumes
— K-discrete orientation polytopes (k-

DOPS)
— Convex hulls, etc.

Tradeoff:

— complex shape — tight fit — fewer

Intersections

— simple shape — fast intersection

oy e 43 G 9o 4B WR " @& =W

-
-
‘\ -
-) ——
- (-
- -
| ! A
- - -

Convex Hull

52

Bounding Volume Hierarchies

» Construction: top down

Bounding Volume Hierarchies

» Construction: bottom-up

O O O

\<‘ ay" @
>
<Y/

Bounding Volume Hierarchies

e Construction: insertion

BVH Traversal

void intersectBVH(ray, &hit) {

if (boundingBox.hit(ray)) {

if (leaf)
leaf.intersect(ray, &hit);

else

leftChild.intersectBVH(ray, &hit);
rightChild.intersectBVH(ray, &hit);

56

BVH Efficiency

* Brute force: 6321 intersection tests / ray
* Using BVH: 2.6 intersection tests / ray

L\

-

57

Summary

» Spatial decomposition
— Inserts objects into disjoint spatial regions
— top-down construction

* ODbject decomposition
— partitions objects into disjoint sets
— bounding volumes may overlap!
— bottom-up, or top-down construction

58

Super Optimizations

Lots of opportunity for extra optimizations:

Carefully written inner loop
(avoid recursion, use your own stack!)

Compact data structures
— Ensure small memory footprint for each node
— Don't store unnecessary cells

Trace packets of rays
— 4 or more rays at a time (exploit SSE, etc)

Thread-level parallelism

much more

59

Compact Data Structures

* A KD-tree node In 25 bytes:

struct Node

{

int splitAxis;

float splitPos;

Node *leftChild, *rightChild;
bool isLeaf;

Object *objArray;

int numObijects;

J

What can we do to reduce the size?

60

Compact Data Structures

* A KD-tree node In 21 bytes:

struct Node

{

int splitAxis;

float splitPos;
Node *leftChild;
bool isLeaf;
Object *objArray;
int numObijects;

61

Compact Data Structures

* A KD-tree node In 12 bytes:

struct Node

{

float splitPos;

void *leftChildOrObjects;

int flags; // numobjects, split axis, isLeaf
}

Can be done In 8 bytes!

62

Compact Data Structures

e Grids

— many cells may be empty, wasteful to store
them

— store only occupied cells using hashing

Input mesh occupied grid cells

Exploiting Hardware

caching

parallelism

SIMD extensions
programmable GPUs
dedicated ray-tracing hardware

64

Summary

» Key points
— ray-surface Intersections dominate computation
effort in ray-tracing
— spatial pre-sorting significantly reduces ray-
surface intersection calculations
» divide and conquer O(N) — O(logN)
— How to decide which Is best?

 uniform grids, hierarchical grids, kd-trees, bsp-trees,
bounding volume hierarchies, ...

66

Obtaining and using Meshes

* Triangle mesh & texture resources

— Stanford 3D Scanning Repository
— NASA 3D Resources
— Wojciech Jarosz’s links page

* Mesh conversion/editing software

— Blender
— MeshLab

67

http://graphics.stanford.edu/data/3Dscanrep/
http://nasa3d.arc.nasa.gov/models
http://www.cs.dartmouth.edu/~wjarosz/links.html
https://www.blender.org/
http://meshlab.sourceforge.net/

	Slide 1: Computer Graphics
	Slide 2: The Quest for Realism
	Slide 3: The Quest for Realism
	Slide 4: The Quest for Realism
	Slide 5: Overview
	Slide 6: Overview
	Slide 7: Ray Tracing Acceleration
	Slide 8: Ray Tracing Cost
	Slide 9: O(No) Ray Tracing (The Problem)
	Slide 10: Sub-linear Ray Tracing
	Slide 11: Acceleration Techniques
	Slide 12: Axis Aligned Bounding Boxes
	Slide 13: Ray-AABB Intersection
	Slide 14: Ray-AABB Intersection
	Slide 15: Ray-AABB Intersection
	Slide 16: Spatial Sorting
	Slide 17: Uniform Grids
	Slide 18: Uniform Grids
	Slide 19: Object/Object Intersections
	Slide 20: Uniform Grids
	Slide 21: Uniform Grids
	Slide 22: Uniform Grid Efficiency
	Slide 23: Uniform Grids
	Slide 24: Hierarchical Grid Efficiency
	Slide 25: Complex Geometry
	Slide 26: Visual Break
	Slide 27: A Complex Scene
	Slide 28: Spatial Hierarchies
	Slide 29: KD-Trees
	Slide 30: KD-Trees
	Slide 31: KD-Trees
	Slide 32: KD-Trees
	Slide 33: KD-Trees
	Slide 34: KD-Trees
	Slide 35: KD-Trees
	Slide 36: KD-Trees
	Slide 37: KD-Trees
	Slide 38: KD-Trees
	Slide 39: KD-Tree
	Slide 40: Comparison
	Slide 41: KD-Tree Efficiency
	Slide 42: Visual Break
	Slide 43: Octrees
	Slide 44: Octrees
	Slide 45: General BSP-Trees
	Slide 46: Comparison
	Slide 47: Visual Break
	Slide 48: Bounding Volume Hierarchies
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Bounding Volume Hierarchies
	Slide 54: Bounding Volume Hierarchies
	Slide 55: Bounding Volume Hierarchies
	Slide 56: BVH Traversal
	Slide 57: BVH Efficiency
	Slide 58: Summary
	Slide 59: Super Optimizations
	Slide 60: Compact Data Structures
	Slide 61: Compact Data Structures
	Slide 62: Compact Data Structures
	Slide 63: Compact Data Structures
	Slide 64: Exploiting Hardware
	Slide 66: Summary
	Slide 67: Obtaining and using Meshes

