
Computer Graphics
Acceleration Data Structures

Andreas Byström

Prof. Dr. Markus Gross

grossm@inf.ethz.ch

https://www.technology.disneyanimation.com/islandscene

mailto:grossm@inf.ethz.ch

The Quest for Realism

• Realism through geometric complexity

2

The Quest for Realism

• Realism through geometric complexity

3

Andreas Byström

• Realism through geometric complexity

The Quest for Realism

4

Overview

5

Acceleration techniques

Fewer intersection

computations
Fewer rays Generalized rays

• uniform grids

• binary space partition

(BSP-tree), KD-tree,

Octree

• Bounding volume

hierarchies (BVH)

• early ray termination

• adaptive sampling

• beam tracing

• cone tracing

Overview

6

Fewer intersection

computations

• uniform grids

• binary space partition

(BSP-tree), KD-tree,

Octree

• Bounding volume

hierarchies (BVH)

Acceleration techniques

Fewer rays Generalized rays

• early ray termination

• adaptive sampling

• beam tracing

• cone tracing

Ray Tracing Acceleration

• Brute force approach

– intersect every ray with

every primitive

– many unnecessary

ray-surface

intersection tests

7

• Ray-surface intersection is at the core of every

ray tracing algorithm

Oliver Deussen, Univerity of Konstanz

Ray Tracing Cost

• “the time required to compute the intersections of rays and

surfaces is over 95 percent”

—Whitted 1980

• Cost = O(Nx·Ny·No)

– (number of pixels) * (number of objects)

– Assumes 1 ray per pixel

• Example: 1000x1000 image of a scene with 1000 triangles

– Cost is (at least) 109 ray-triangle intersections

• Typically measured per ray:

– Naive: O(No) - linear with number of objects

8

O(No) Ray Tracing (The Problem)

9

8 primitives → 3 seconds 50K trees each with 1M polygons = 50B polygons

Andreas Byström

→ 594 years!

Sub-linear Ray Tracing

10

50K trees each with 1M polygons = 50B polygons → 11 minutes

300,000,000x speedup!

Andreas Byström

Acceleration Techniques

• Spatial Subdivision

• Object Subdivision

11

Axis Aligned Bounding Boxes

struct AABB

{
Vector3 min;

Vector3 max;

};

12

min

max

Ray-AABB Intersection

• Intersection of slabs

13

min

max

ymin

ymax

xmaxxmin

ty2

tx2

tx1ty1

Ray-AABB Intersection

• 𝑡𝑚𝑖𝑛 > 𝑡𝑚𝑎𝑥

14

min

max

ymin

ymax

xmaxxmin

ty2

tx2

tx1

ty1

Ray-AABB Intersection

• 𝑡𝑚𝑖𝑛 < 𝑡𝑚𝑎𝑥

15

ymin

ymax

xmaxxmin

ty2 tx2

tx1

ty1

Spatial Sorting

• Preprocess

– Decompose space into disjoint regions

– Store pointers to overlapping objects within each region

• Rendering

– Traverse through regions overlapping the ray

– Intersect objects in each region until a hit is found

16

Uniform Grids

• Preprocessing

– compute bounding box

– determine grid resolution

• (often ~ 33 𝑛)

17

Uniform Grids

• Preprocessing

– compute bounding box

– determine grid resolution

• (often ~ 33 𝑛)

– insert objects into cells

– Rasterize bounding box

– Prune empty cells

– Store reference for each

object in cell

18

Object/Object Intersections

• In a ray tracer we need to intersect:

– Rays, planes

– Spheres, cylinders, cones

– Triangles/Polygons

– Axis aligned & oriented bounding boxes

– etc.

• Implementation reference

– http://www.realtimerendering.com/intersections.html

19

http://www.realtimerendering.com/intersections.html

Uniform Grids

• Traversal

– incrementally rasterize

ray

– compute intersection

with objects in each cell

– stop when intersection

found in current voxel

20

Uniform Grids

• Comparison: brute-

force

– intersect ray with every

primitive

– take closest intersection

21

Uniform Grid Efficiency

• Brute force: 6321 intersection tests per ray (total = 3,710,882,127)

• Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)

22

6321 triangles

Henrik Wann Jensen

Uniform Grids

• Advantages

– Easy to code, building data structure is fast

• Disadvantages

– Uniform cells do not adapt to non-uniform

scenes

• Teapot in a stadium problem

– Hierarchical grids

23

Hierarchical Grid Efficiency

• Brute force: 6321 intersection tests per ray (total = 3,710,882,127)

• Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)

• 2-level grid: 12.05 intersection tests per ray (total = 7,072,774)

24

Henrik Wann Jensen

Complex Geometry

• Grass

25

render time: 7 minutes

Visual Break

26

Andreas Byström

A Complex Scene

27

245 billion polys. 250,000 instances.

Spatial Hierarchies

• Classical divide-and-conquer approach

• Several variations

28

kd-treeoctree bsp-tree

KD-Trees

• Preprocessing

– compute bounding box

29

KD-Trees

• Preprocessing

– compute bounding box

– recursively split cell using

axis-aligned plane

– until termination criteria

e.g. maximum depth or

minimum number of

objects

30

KD-Trees

• Preprocessing

– binary tree structure

31

root

only leaf nodes store reference to geometry!

leaf nodes

internal

nodes

KD-Trees

• Internal nodes store

– split axis: x-, y-, or z-axis

– split position: coordinate of split plane along

axis

– children: reference to child nodes

• Leaf nodes store

– list of primitives

– optionally: mailboxing information

32

KD-Trees

• Traversal

– top-down recursion

33

internal node → split

KD-Trees

• Traversal

– top-down recursion

34

internal node → split

KD-Trees

• Traversal

– top-down recursion

35

leaf node → intersect

KD-Trees

• Traversal

– top-down recursion

36

internal node → split

KD-Trees

• Traversal

– top-down recursion

37

leaf node → intersect

KD-Trees

• Traversal

– top-down recursion

38

leaf node → intersect

KD-Tree

39

Comparison

40

uniform grid kd-tree

KD-Tree Efficiency

4

1

Total intersection tests Intersection tests / ray

Brute force 9,986,402,697 6321.00

depth=8, mo=10 111,204,795 70.38

depth=16, mo=8 11,361,140 7.19

depth=24, mo=8 9,930,604 6.28

depth=24, mo=4 6,350,655 4.02

depth=32, mo=2 4,426,580 2.80

Visual Break

42

Andreas Byström

Octrees

• Preprocessing

– compute bounding box

– recursively subdivide

cells into 8 equal sub-

cells

– until termination criteria

43

Octrees

• Traversal

– Similar to kd-trees

• Easier to implement

• Cheaper costs for

– Insertion

– Deletion

• Generally less effective

division of space

44

General BSP-Trees

• Preprocessing

– compute bounding box

– recursively split space

using arbitrary planes

45

Comparison

• Spatial subdivision

based on divide-and-

conquer

– Octree

• fixed splitting operation

– Kd-tree

• fixed plane orientation,

variable position & axis

– BSP tree

• arbitrary planes

46

c
o
m

p
le

x
it
y

fl
e
x
ib

ili
ty

fe
w

e
r

in
te

rs
e
c
ti
o
n
s

Visual Break

47

Bounding Volume Hierarchies

• Alternative divide-and-conquer method

• Spatial sorting

– Decompose space into disjoint regions &

assign objects to regions

• Bounding volumes

– Decompose objects into (overlapping) sets &

bound using simple volumes for fast rejection

48

• Bounding Volumes

– Spheres

49

Bounding Volume Hierarchies

• Bounding Volumes

– Spheres

– Axis-aligned bounding box (AABB), most

common

50

Bounding Volume Hierarchies

• Bounding Volumes

– Spheres

– Axis-aligned bounding box (AABB), most

common

– Oriented bounding box (OBB)

51

Bounding Volume Hierarchies

• Bounding Volumes

– K-discrete orientation polytopes (k-

DOPs)

– Convex hulls, etc.

• Tradeoff:

– complex shape → tight fit → fewer

intersections

– simple shape → fast intersection

52

More Bounding Volume Hierarchies

Convex Hull

Bounding Volume Hierarchies

• Construction: top down

53

Bounding Volume Hierarchies

• Construction: bottom-up

54

Bounding Volume Hierarchies

• Construction: insertion

55

BVH Traversal

void intersectBVH(ray, &hit) {
if (boundingBox.hit(ray)) {

if (leaf)
leaf.intersect(ray, &hit);

else
leftChild.intersectBVH(ray, &hit);
rightChild.intersectBVH(ray, &hit);

}

}

56

BVH Efficiency

• Brute force: 6321 intersection tests / ray

• Using BVH: 2.6 intersection tests / ray

57

Henrik Wann Jensen

Summary

• Spatial decomposition

– inserts objects into disjoint spatial regions

– top-down construction

• Object decomposition

– partitions objects into disjoint sets

– bounding volumes may overlap!

– bottom-up, or top-down construction

58

Super Optimizations

• Lots of opportunity for extra optimizations:

• Carefully written inner loop

(avoid recursion, use your own stack!)

• Compact data structures

– Ensure small memory footprint for each node

– Don’t store unnecessary cells

• Trace packets of rays

– 4 or more rays at a time (exploit SSE, etc)

• Thread-level parallelism

• much more

59

Compact Data Structures

• A KD-tree node in 25 bytes:

struct Node
{

int splitAxis;
float splitPos;
Node *leftChild, *rightChild;
bool isLeaf;
Object *objArray;
int numObjects;

}

What can we do to reduce the size?

60

Compact Data Structures

• A KD-tree node in 21 bytes:

struct Node
{

int splitAxis;
float splitPos;
Node *leftChild;
bool isLeaf;
Object *objArray;
int numObjects;

}

61

Compact Data Structures

• A KD-tree node in 12 bytes:

struct Node
{

float splitPos;
void *leftChildOrObjects;
int flags; // numObjects, split axis, isLeaf

}

Can be done in 8 bytes!

62

Compact Data Structures

• Grids

– many cells may be empty, wasteful to store

them

– store only occupied cells using hashing

63

input mesh occupied grid cells

Exploiting Hardware

• caching

• parallelism

• SIMD extensions

• programmable GPUs

• dedicated ray-tracing hardware

64

Summary

• Key points

– ray-surface intersections dominate computation

effort in ray-tracing

– spatial pre-sorting significantly reduces ray-

surface intersection calculations

• divide and conquer O(N) → O(logN)

– How to decide which is best?

• uniform grids, hierarchical grids, kd-trees, bsp-trees,

bounding volume hierarchies, ...

66

Obtaining and using Meshes

• Triangle mesh & texture resources

– Stanford 3D Scanning Repository

– NASA 3D Resources

– Wojciech Jarosz’s links page

• Mesh conversion/editing software

– Blender

– MeshLab

67

http://graphics.stanford.edu/data/3Dscanrep/
http://nasa3d.arc.nasa.gov/models
http://www.cs.dartmouth.edu/~wjarosz/links.html
https://www.blender.org/
http://meshlab.sourceforge.net/

	Slide 1: Computer Graphics
	Slide 2: The Quest for Realism
	Slide 3: The Quest for Realism
	Slide 4: The Quest for Realism
	Slide 5: Overview
	Slide 6: Overview
	Slide 7: Ray Tracing Acceleration
	Slide 8: Ray Tracing Cost
	Slide 9: O(No) Ray Tracing (The Problem)
	Slide 10: Sub-linear Ray Tracing
	Slide 11: Acceleration Techniques
	Slide 12: Axis Aligned Bounding Boxes
	Slide 13: Ray-AABB Intersection
	Slide 14: Ray-AABB Intersection
	Slide 15: Ray-AABB Intersection
	Slide 16: Spatial Sorting
	Slide 17: Uniform Grids
	Slide 18: Uniform Grids
	Slide 19: Object/Object Intersections
	Slide 20: Uniform Grids
	Slide 21: Uniform Grids
	Slide 22: Uniform Grid Efficiency
	Slide 23: Uniform Grids
	Slide 24: Hierarchical Grid Efficiency
	Slide 25: Complex Geometry
	Slide 26: Visual Break
	Slide 27: A Complex Scene
	Slide 28: Spatial Hierarchies
	Slide 29: KD-Trees
	Slide 30: KD-Trees
	Slide 31: KD-Trees
	Slide 32: KD-Trees
	Slide 33: KD-Trees
	Slide 34: KD-Trees
	Slide 35: KD-Trees
	Slide 36: KD-Trees
	Slide 37: KD-Trees
	Slide 38: KD-Trees
	Slide 39: KD-Tree
	Slide 40: Comparison
	Slide 41: KD-Tree Efficiency
	Slide 42: Visual Break
	Slide 43: Octrees
	Slide 44: Octrees
	Slide 45: General BSP-Trees
	Slide 46: Comparison
	Slide 47: Visual Break
	Slide 48: Bounding Volume Hierarchies
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Bounding Volume Hierarchies
	Slide 54: Bounding Volume Hierarchies
	Slide 55: Bounding Volume Hierarchies
	Slide 56: BVH Traversal
	Slide 57: BVH Efficiency
	Slide 58: Summary
	Slide 59: Super Optimizations
	Slide 60: Compact Data Structures
	Slide 61: Compact Data Structures
	Slide 62: Compact Data Structures
	Slide 63: Compact Data Structures
	Slide 64: Exploiting Hardware
	Slide 66: Summary
	Slide 67: Obtaining and using Meshes

