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Overview
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Fewer intersection
computations
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* uniform grids

* binary space partition
(BSP-tree), KD-tree,
Octree

* Bounding volume
hierarchies (BVH)
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Ray Tracing Acceleration

» Ray-surface intersection Is at the core of every
ray tracing algorithm

» Brute force approach _‘

— intersect every ray with ' -
every primitive

— many unnecessary

ray-surface
Intersection tests




Ray Tracing Cost

“the time required to compute the intersections of rays and
surfaces is over 95 percent’
—Whitted 1980

Cost = O(Nx*Ny-No)
— (number of pixels) * (hnumber of objects)
— Assumes 1 ray per pixel

Example: 1000x1000 image of a scene with 1000 triangles
— Cost is (at least) 10° ray-triangle intersections

Typically measured per ray:
— Naive: O(N,) - linear with number of objects




O(N,) Ray Tracing (The Problem)

s - TR
8 primitives — 3 seconds 50K trees each with 1M polygons = 50B polygons — 594 years!




Sub-linear Ray Tracing

50K trees each with 1M polygons = 50B polygons — 11 minutes
300,000,000x speedup!
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Acceleration Technigues

» Spatial Subdivision
* ODbject Subdivision

11



AXxIs Aligned Bounding Boxes

struct AABB

{ mdax

Vector3 min;
Vector3 max;

%

min
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Ray-AABB Intersection
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Ray-AABB Intersection

tmin

>

tm ax

Xmax

4 y2

14



Ray-AABB Intersection
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Spatial Sorting

* Preprocess
— Decompose space into disjoint regions
— Store pointers to overlapping objects within each region

* Rendering
— Traverse through regions overlapping the ray
— Intersect objects in each region until a hit is found
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Uniform Grids

* Preprocessing
— compute bounding box

— determine grid resolution |_‘

(often ~ 33/n)
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Uniform Grids

Preprocessing

compute bounding box

determine grid resolution
(often ~ 33/n)

Insert objects into cells

Rasterize bounding box

Prune empty cells

Store reference for each
object in cell
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Object/Object Intersections

* |n a ray tracer we need to intersect:
— Rays, planes
— Spheres, cylinders, cones
— Triangles/Polygons
— AXis alighed & oriented bounding boxes
— etc.

* Implementation reference
— http://www.realtimerendering.com/intersections.htmi
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http://www.realtimerendering.com/intersections.html

Uniform Grids

* Traversal
— Incrementally rasterize

ray

— compute Iintersection

~

with objects in each cell

— stop when Intersection

found In current voxel
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Uniform Grids

» Comparison: brute-
force

— Intersect ray with every .

primitive
— take closest intersection /-/
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Uniform Grid Efficiency

6321 triangles

Brute force: 6321 intersection tests per ray (total = 3,710,882,127)
Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)

22



Uniform Grids

« Advantages
— Easy to code, building data structure Is fast

» Disadvantages
— Uniform cells do not adapt to non-uniform

SCenes

* Teapot in a stadium problem

— Hierarchical grids
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Hierarchical Grid Efficiency

Brute force: 6321 intersection tests per ray (total = 3,710,882,127)
Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)
2-level grid: 12.05 intersection tests per ray (total = 7,072,774)
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Complex Geometry

e (Grass

render time: 7 minutes
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Visual Break

Andreas Bystrom
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A Complex Scene

245 billion polys. 250,000 instances.
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Spatial Hierarchies

» Classical divide-and-conquer approach
» Several variations

A\ 4

OcCtlree

| 4

P

| 4

kd-tree

bsp-tree
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KD-Trees

* Preprocessing
— compute bounding box
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KD-Trees

* Preprocessing
— compute bounding box

— recursively split cell using |_‘
axis-aligned plane

— until termination criteria
e.g. maximum depth or

minimum number of
objects
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KD-Trees

* Preprocessing
— binary tree structure

root

e \
nodos / \ / \
leaf nodes / \

only leaf nodes store reference to geometry!
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KD-Trees

* Internal nodes store
— split axis: x-, y-, or z-axis
— split position: coordinate of split plane along
axis
— children: reference to child nodes
» Leaf nodes store
— list of primitives
— optionally: mailboxing information
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KD-Trees

* Traversal
— top-down recursion

internal node — split
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KD-Trees

* Traversal
— top-down recursion

N

internal node — split
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KD-Trees

* Traversal
— top-down recursion

leaf node — intersect
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KD-Trees

* Traversal
— top-down recursion

‘/‘\C
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O

internal node — split

tmin
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KD-Trees

* Traversal
— top-down recursion

C/‘\C
Q/ O/

leaf node — intersect

tmin

tmax
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KD-Trees

* Traversal
— top-down recursion

C/‘\C
/N /

leaf node — intersect

L

el

=

tmin
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Comparison

uniform grid

e O

tmin

=

v

kd-tree
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KD-Tree Efficiency

Total intersection tests

Intersection tests / ray

Brute force 9,986,402,697 6321.00
depth=8, mo=10 111,204,795 70.38
depth=16, mo=8 11,361,140 7.19
depth=24, mo=8 9,930,604 6.28
depth=24, mo=4 6,350,655 4.02
depth=32, mo=2 4,426,580 2.80




Visual Break
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Octrees

* Preprocessing
— compute bounding box

— recursively subdivide
cells into 8 equal sub-
cells

— until termination criteria
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Octrees

 Traversal
— Similar to kd-trees

» Easier to implement
* Cheaper costs for

— Insertion
— Deletion

» Generally less effective
division of space

=

i, e

T
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General BSP-Trees

* Preprocessing
— compute bounding box

— recursively split space I_‘
using arbitrary planes
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Comparison

» Spatial subdivision
based on divide-and-
conguer
— Octree

» fixed splitting operation
— Kd-tree

» fixed plane orientation,
variable position & axis

— BSP tree
 arbitrary planes

flexibility
fewer Iintersections

<

complexity
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Bounding Volume Hierarchies

 Alternative divide-and-conquer method

» Spatial sorting

— Decompose space Into disjoint regions &
assign objects to regions

* Bounding volumes

— Decompose objects into (overlapping) sets &
bound using simple volumes for fast rejection
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Bounding Volume Hierarchies

* Bounding Volumes
— Spheres
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Bounding Volume Hierarchies

* Bounding Volumes
— Spheres
— Axis-aligned bounding box (AABB), most

common
PN \\




Bounding Volume Hierarchies

* Bounding Volumes
— Spheres

— Axis-aligned bounding box (AABB), most
common

— Oriented bounding box (OBB)

N "
N\
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More Bounding Volume Hierarchies

Bounding Volumes
— K-discrete orientation polytopes (k-

DOPS)
— Convex hulls, etc.

Tradeoff:

— complex shape — tight fit — fewer

Intersections

— simple shape — fast intersection
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Convex Hull
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Bounding Volume Hierarchies

» Construction: top down




Bounding Volume Hierarchies

» Construction: bottom-up
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Bounding Volume Hierarchies

e Construction: insertion




BVH Traversal

void intersectBVH( ray, &hit ) {

if ( boundingBox.hit( ray) ) {

if (leaf)
leaf.intersect( ray, &hit );

else

leftChild.intersectBVH( ray, &hit );
rightChild.intersectBVH( ray, &hit );
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BVH Efficiency

* Brute force: 6321 intersection tests / ray
* Using BVH: 2.6 intersection tests / ray

L\

-
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Summary

» Spatial decomposition
— Inserts objects into disjoint spatial regions
— top-down construction

* ODbject decomposition
— partitions objects into disjoint sets
— bounding volumes may overlap!
— bottom-up, or top-down construction
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Super Optimizations

Lots of opportunity for extra optimizations:

Carefully written inner loop
(avoid recursion, use your own stack!)

Compact data structures
— Ensure small memory footprint for each node
— Don't store unnecessary cells

Trace packets of rays
— 4 or more rays at a time (exploit SSE, etc)

Thread-level parallelism

much more
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Compact Data Structures

* A KD-tree node In 25 bytes:

struct Node

{

int splitAxis;

float splitPos;

Node *leftChild, *rightChild;
bool isLeaf;

Object *objArray;

int numObijects;

J

What can we do to reduce the size?
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Compact Data Structures

* A KD-tree node In 21 bytes:

struct Node

{

int splitAxis;

float splitPos;
Node *leftChild;
bool isLeaf;
Object *objArray;
int numObijects;
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Compact Data Structures

* A KD-tree node In 12 bytes:

struct Node

{

float splitPos;

void *leftChildOrObjects;

int flags; // numobjects, split axis, isLeaf
}

Can be done In 8 bytes!
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Compact Data Structures

e Grids

— many cells may be empty, wasteful to store
them

— store only occupied cells using hashing

Input mesh occupied grid cells




Exploiting Hardware

caching

parallelism

SIMD extensions
programmable GPUs
dedicated ray-tracing hardware
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Summary

» Key points
— ray-surface Intersections dominate computation
effort in ray-tracing
— spatial pre-sorting significantly reduces ray-
surface intersection calculations
» divide and conquer O(N) — O(logN)
— How to decide which Is best?

 uniform grids, hierarchical grids, kd-trees, bsp-trees,
bounding volume hierarchies, ...
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Obtaining and using Meshes

* Triangle mesh & texture resources

— Stanford 3D Scanning Repository
— NASA 3D Resources
— Wojciech Jarosz’s links page

* Mesh conversion/editing software

— Blender
— MeshLab

67


http://graphics.stanford.edu/data/3Dscanrep/
http://nasa3d.arc.nasa.gov/models
http://www.cs.dartmouth.edu/~wjarosz/links.html
https://www.blender.org/
http://meshlab.sourceforge.net/
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