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The Quest for Realism

• Realism through geometric complexity
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Ray Tracing Acceleration

• Brute force approach

– intersect every ray with 

every primitive

– many unnecessary 

ray-surface 

intersection tests
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• Ray-surface intersection is at the core of every 

ray tracing algorithm

Oliver Deussen, Univerity of Konstanz



Ray Tracing Cost

• “the time required to compute the intersections of rays and 

surfaces is over 95 percent”

—Whitted 1980

• Cost = O(Nx·Ny·No)

– (number of pixels) * (number of objects)

– Assumes 1 ray per pixel

• Example: 1000x1000 image of a scene with 1000 triangles

– Cost is (at least) 109 ray-triangle intersections

• Typically measured per ray:

– Naive: O(No) - linear with number of objects
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O(No) Ray Tracing (The Problem)
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8 primitives → 3 seconds 50K trees each with 1M polygons = 50B polygons

Andreas Byström

→ 594 years!



Sub-linear Ray Tracing
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50K trees each with 1M polygons = 50B polygons → 11 minutes

300,000,000x speedup! 

Andreas Byström



Acceleration Techniques

• Spatial Subdivision

• Object Subdivision
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Axis Aligned Bounding Boxes

struct AABB

{ 
Vector3 min;

Vector3 max; 

};
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Ray-AABB Intersection

• Intersection of slabs
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Ray-AABB Intersection

• 𝑡𝑚𝑖𝑛 > 𝑡𝑚𝑎𝑥
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Ray-AABB Intersection

• 𝑡𝑚𝑖𝑛 < 𝑡𝑚𝑎𝑥
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Spatial Sorting

• Preprocess

– Decompose space into disjoint regions

– Store pointers to overlapping objects within each region

• Rendering

– Traverse through regions overlapping the ray

– Intersect objects in each region until a hit is found
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Uniform Grids

• Preprocessing

– compute bounding box

– determine grid resolution

• (often ~ 33 𝑛 ) 
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Uniform Grids

• Preprocessing

– compute bounding box

– determine grid resolution

• (often ~ 33 𝑛 ) 

– insert objects into cells

– Rasterize bounding box

– Prune empty cells

– Store reference for each 

object in cell
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Object/Object Intersections

• In a ray tracer we need to intersect:

– Rays, planes

– Spheres, cylinders, cones

– Triangles/Polygons

– Axis aligned & oriented bounding boxes

– etc.

• Implementation reference

– http://www.realtimerendering.com/intersections.html
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http://www.realtimerendering.com/intersections.html


Uniform Grids

• Traversal

– incrementally rasterize 

ray 

– compute intersection 

with objects in each cell

– stop when intersection 

found in current voxel
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Uniform Grids

• Comparison: brute-

force

– intersect ray with every 

primitive

– take closest intersection
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Uniform Grid Efficiency

• Brute force: 6321 intersection tests per ray (total = 3,710,882,127)

• Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)
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6321 triangles

Henrik Wann Jensen



Uniform Grids

• Advantages 

– Easy to code, building data structure is fast

• Disadvantages

– Uniform cells do not adapt to non-uniform 

scenes

• Teapot in a stadium problem

– Hierarchical grids
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Hierarchical Grid Efficiency

• Brute force: 6321 intersection tests per ray (total = 3,710,882,127)

• Uniform grid: 44.86 intersection tests per ray (total = 26,336,575)

• 2-level grid: 12.05 intersection tests per ray (total = 7,072,774)
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Complex Geometry

• Grass
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render time: 7 minutes



Visual Break
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A Complex Scene
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245 billion polys. 250,000 instances.



Spatial Hierarchies

• Classical divide-and-conquer approach

• Several variations
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kd-treeoctree bsp-tree



KD-Trees

• Preprocessing

– compute bounding box
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KD-Trees

• Preprocessing

– compute bounding box

– recursively split cell using 

axis-aligned plane

– until termination criteria 

e.g. maximum depth or 

minimum number of 

objects
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KD-Trees

• Preprocessing

– binary tree structure
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root

only leaf nodes store reference to geometry!

leaf nodes

internal 

nodes



KD-Trees

• Internal nodes store

– split axis: x-, y-, or z-axis

– split position: coordinate of split plane along 

axis

– children: reference to child nodes

• Leaf nodes store

– list of primitives

– optionally: mailboxing information
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KD-Trees

• Traversal

– top-down recursion
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internal node → split
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KD-Trees

• Traversal

– top-down recursion
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leaf node → intersect



KD-Trees

• Traversal

– top-down recursion
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KD-Trees

• Traversal

– top-down recursion
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leaf node → intersect



KD-Trees

• Traversal

– top-down recursion
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leaf node → intersect



KD-Tree
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Comparison
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uniform grid kd-tree



KD-Tree Efficiency

4

1

Total intersection tests Intersection tests / ray

Brute force 9,986,402,697 6321.00

depth=8, mo=10 111,204,795 70.38

depth=16, mo=8 11,361,140 7.19

depth=24, mo=8 9,930,604 6.28

depth=24, mo=4 6,350,655 4.02

depth=32, mo=2 4,426,580 2.80



Visual Break
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Octrees

• Preprocessing

– compute bounding box

– recursively subdivide 

cells into 8 equal sub-

cells

– until termination criteria
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Octrees

• Traversal

– Similar to kd-trees

• Easier to implement

• Cheaper costs for

– Insertion

– Deletion

• Generally less effective 

division of space
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General BSP-Trees

• Preprocessing

– compute bounding box

– recursively split space 

using arbitrary planes
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Comparison

• Spatial subdivision 

based on divide-and-

conquer

– Octree

• fixed splitting operation

– Kd-tree

• fixed plane orientation, 

variable position & axis

– BSP tree

• arbitrary planes
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Visual Break
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Bounding Volume Hierarchies

• Alternative divide-and-conquer method

• Spatial sorting

– Decompose space into disjoint regions & 

assign objects to regions

• Bounding volumes

– Decompose objects into (overlapping) sets & 

bound using simple volumes for fast rejection
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• Bounding Volumes

– Spheres
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Bounding Volume Hierarchies



• Bounding Volumes

– Spheres

– Axis-aligned bounding box (AABB), most 

common
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Bounding Volume Hierarchies



• Bounding Volumes

– Spheres

– Axis-aligned bounding box (AABB), most 

common

– Oriented bounding box (OBB)
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Bounding Volume Hierarchies



• Bounding Volumes

– K-discrete orientation polytopes (k-

DOPs)

– Convex hulls, etc.

• Tradeoff: 

– complex shape → tight fit → fewer 

intersections

– simple shape → fast intersection

52

More Bounding Volume Hierarchies

Convex Hull



Bounding Volume Hierarchies

• Construction: top down
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Bounding Volume Hierarchies

• Construction: bottom-up
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Bounding Volume Hierarchies

• Construction: insertion
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BVH Traversal

void intersectBVH( ray, &hit ) { 
if ( boundingBox.hit( ray ) ) { 

if (leaf) 
leaf.intersect( ray, &hit ); 

else 
leftChild.intersectBVH( ray, &hit );
rightChild.intersectBVH( ray, &hit );

} 

} 
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BVH Efficiency

• Brute force: 6321 intersection tests / ray

• Using BVH: 2.6 intersection tests / ray
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Henrik Wann Jensen



Summary

• Spatial decomposition

– inserts objects into disjoint spatial regions

– top-down construction

• Object decomposition

– partitions objects into disjoint sets

– bounding volumes may overlap!

– bottom-up, or top-down construction
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Super Optimizations

• Lots of opportunity for extra optimizations:

• Carefully written inner loop

(avoid recursion, use your own stack!)

• Compact data structures

– Ensure small memory footprint for each node

– Don’t store unnecessary cells

• Trace packets of rays

– 4 or more rays at a time (exploit SSE, etc)

• Thread-level parallelism

• much more
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Compact Data Structures

• A KD-tree node in 25 bytes:

struct Node
{

int splitAxis;
float splitPos;
Node *leftChild, *rightChild;
bool isLeaf;
Object *objArray;
int numObjects;

}

What can we do to reduce the size?
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Compact Data Structures

• A KD-tree node in 21 bytes:

struct Node
{

int splitAxis;
float splitPos;
Node *leftChild;
bool isLeaf;
Object *objArray;
int numObjects;

}
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Compact Data Structures

• A KD-tree node in 12 bytes:

struct Node
{

float splitPos;
void *leftChildOrObjects;
int flags; // numObjects, split axis, isLeaf

}

Can be done in 8 bytes!
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Compact Data Structures

• Grids

– many cells may be empty, wasteful to store 

them

– store only occupied cells using hashing
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input mesh occupied grid cells



Exploiting Hardware

• caching

• parallelism

• SIMD extensions

• programmable GPUs

• dedicated ray-tracing hardware
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Summary

• Key points

– ray-surface intersections dominate computation 

effort in ray-tracing

– spatial pre-sorting significantly reduces ray-

surface intersection calculations

• divide and conquer  O(N) → O(logN)

– How to decide which is best?

• uniform grids, hierarchical grids, kd-trees, bsp-trees, 

bounding volume hierarchies, ...
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Obtaining and using Meshes

• Triangle mesh & texture resources 

– Stanford 3D Scanning Repository

– NASA 3D Resources

– Wojciech Jarosz’s links page

• Mesh conversion/editing software

– Blender

– MeshLab
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http://graphics.stanford.edu/data/3Dscanrep/
http://nasa3d.arc.nasa.gov/models
http://www.cs.dartmouth.edu/~wjarosz/links.html
https://www.blender.org/
http://meshlab.sourceforge.net/
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