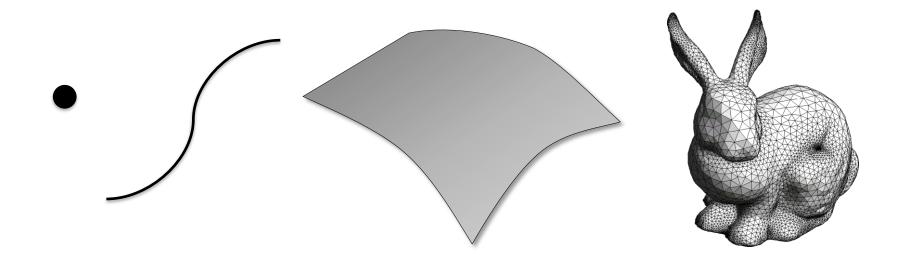
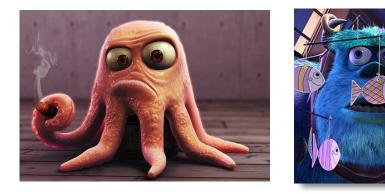
Geometry Processing Prof. Dr. Markus Gross

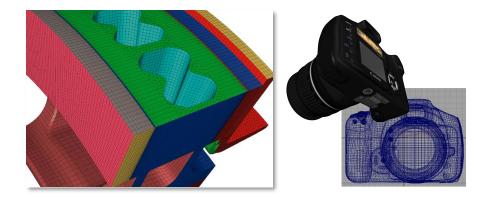
Geometry in Graphics



Applications

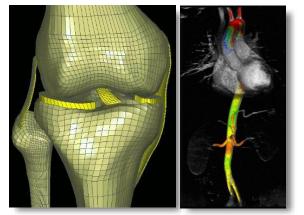


Games/Movies

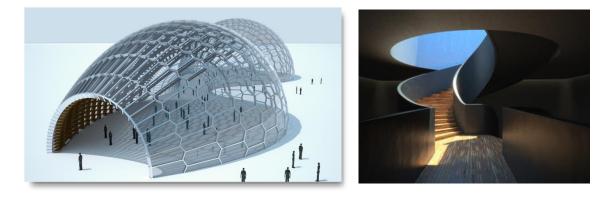


Engineering/Product design

Applications



Medicine/Biology

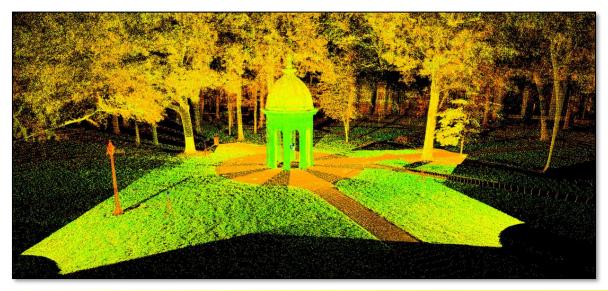


Architecture

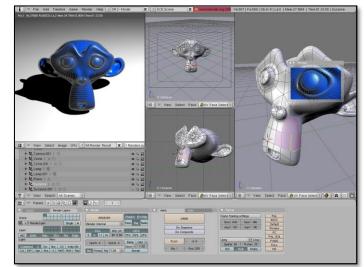
Acquired real-world objects

3D Scanning

• Acquired real-world objects Point Clouds



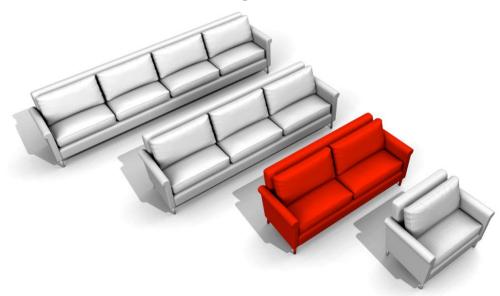
Digital 3D modeling



Digital 3D modeling

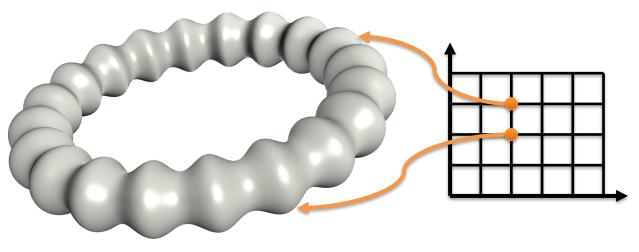


Procedural Modeling



- Considerations
 - Storage
 - Acquisition of shapes
 - Creation of shapes
 - Editing shapes
 - Rendering shapes

Parametric curves & surfaces



 $f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$

Parametric curves & surfaces

Planar Curves $f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n \quad m = 1, n = 2$ t = 0.5 t = 1s(t) = (x(t), y(t))

t = 0

Parametric curves & surfaces

ETH zürich

Circle

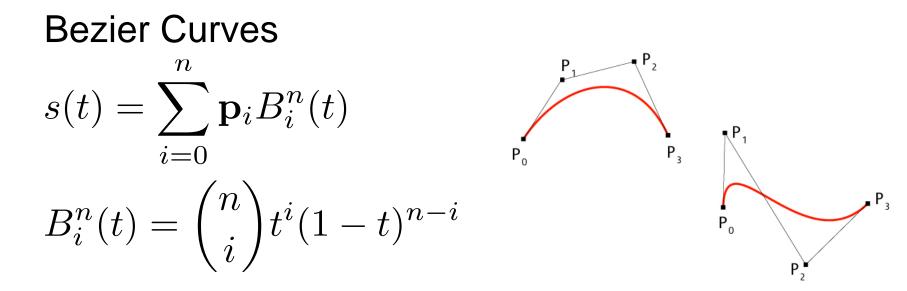
$$\mathbf{p} : \mathbb{R} \to \mathbb{R}^2$$

 $t \mapsto \mathbf{p}(t) = (x(t), y(t))$
 $\mathbf{p}(t) = r(\cos(t), \sin(t)) \quad t \in [0, 2\pi)$

Parametric curves & surfaces

Hzürich

E



Parametric curves & surfaces

Space Curves in 3D $f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$ m = 1, n = 3s(t) = (x(t), y(t), z(t))

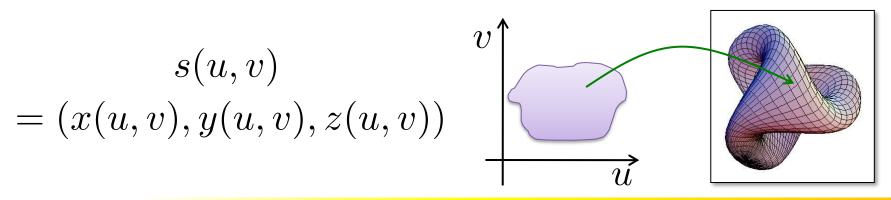
Parametric curves & surfaces

Hzürich

E

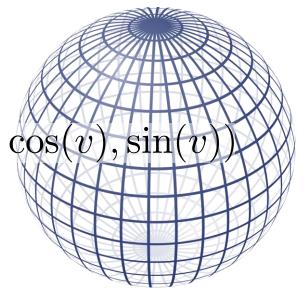
Surfaces

$$f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n \quad m = 2, n = 3$$

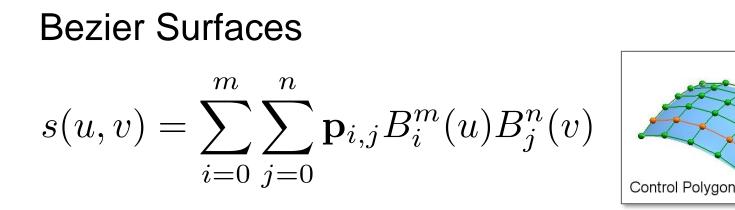


- Parametric curves & surfaces
 - Sphere $s : \mathbb{R}^2 \to \mathbb{R}^3$ $s(u, v) = r(\cos(u)\cos(v), \sin(u)\cos(v), \sin(u)\cos(v), \sin(u)\cos(v))$

ETH zürich

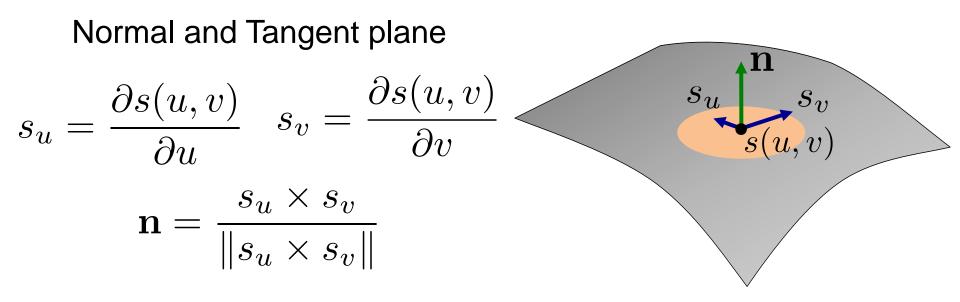


Parametric curves & surfaces



Control Point

Parametric curves & surfaces

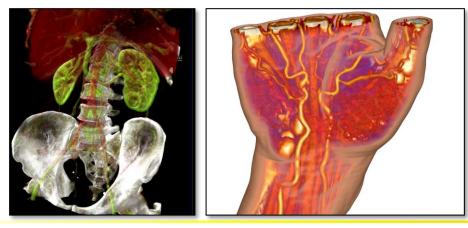


Parametric curves & surfaces

ETH zürich

Volumetric Representations

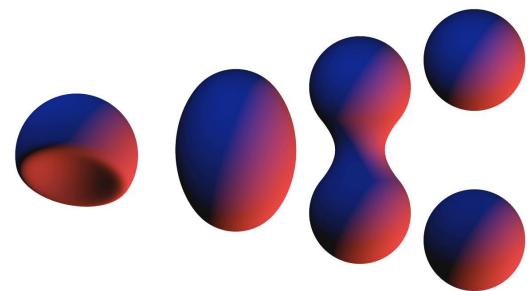
$f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n \quad m = 3, n = 1$



- Parametric curves & surfaces
 - + Easy to generate points on a curve/surface
 - + Easy point-wise differential properties
 - + Easy to control by hand
 - Hard to determine inside/outside
 - Hard to determine if a point is on a curve/surface
 - Hard to generate by reverse engineering

 Polyaonal Machae (see the slides on geometry & textures)

• Implicit surfaces



Implicit curves & surfaces

ETH zürich

$$f: \mathbb{R}^m \to \mathbb{R}$$
Planar Curves
$$S = \{x \in \mathbb{R}^2 | f(x) = 0\}$$

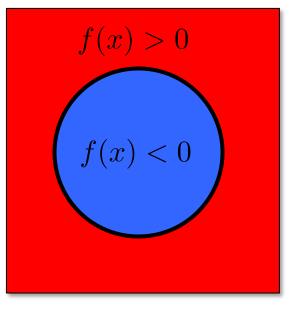
$$S = \{x \in \mathbb{R}^3 | f(x) = 0\}$$

$$S = \{x \in \mathbb{R}^3 | f(x) = 0\}$$

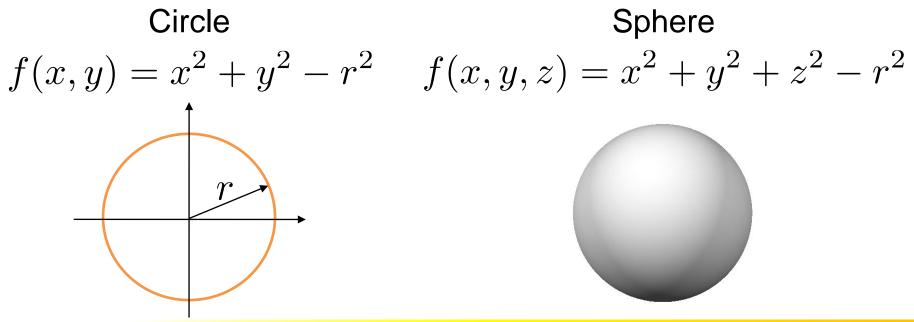
Implicit curves & surfaces

$$\{x \in \mathbb{R}^m | f(x) > 0\} \text{ Outside}$$
$$\{x \in \mathbb{R}^m | f(x) = 0\} \text{ Curve/Surface}$$
$$\{x \in \mathbb{R}^m | f(x) < 0\} \text{ Inside}$$

ETH zürich



Implicit curves & surfaces



Implicit curves & surfaces

ETH zürich

Surface Normal

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)^T$$

Circle

$$f(x, y, z) = x^2 + y^2 + z^2 - r^2$$

$$\nabla f(x, y, z) = (2x, 2y, 2z)^T$$

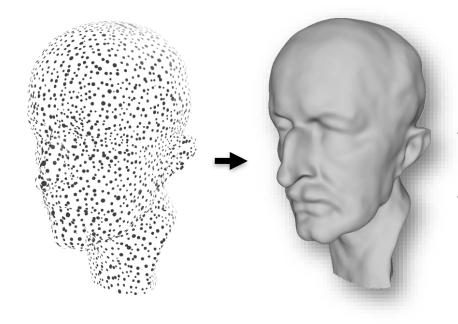
- Implicit curves & surfaces
 - + Easy to determine inside/outside
 - + Easy to determine if a point is on a curve/surface
 - + Easy to combine

Hzürich

- Hard to generate points on a curve/surface
- Limited set of surfaces
- Does not lend itself to (real-time) rendering

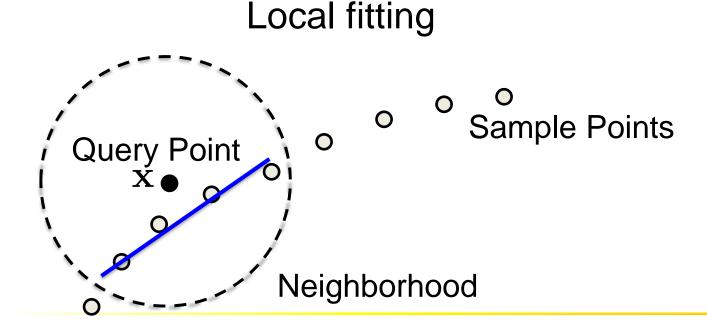
Point Set Surfaces

Point Set Surfaces

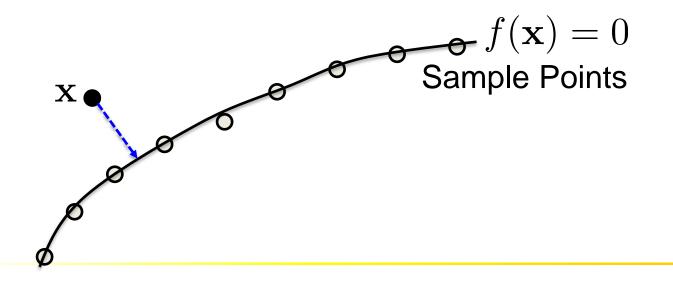


Only point-wise attributes Approximation methods Smooth surfaces Works on acquired data

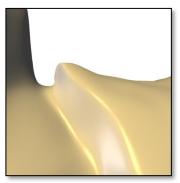
Point Set Surfaces

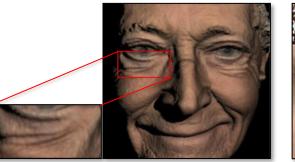


- Point Set Surfaces
 - Implicit representation & fast projection



- Point Set Surfaces
 - Robust to noise
 - Direct rendering
 - Conversion to meshes





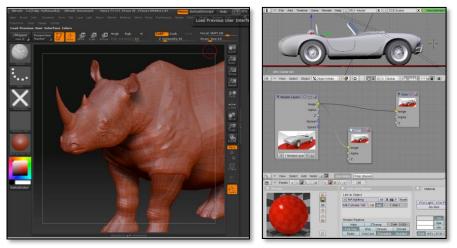
Point Set Surfaces

Hzürich

- + Easy to determine inside/outside
- + Easy to determine if a point is on the curve/surface
- + Easy to generate points on the curve/surface
- + Suitable for reconstruction from general data
- + Direct real-time rendering
- Not efficient to use in some modeling tasks

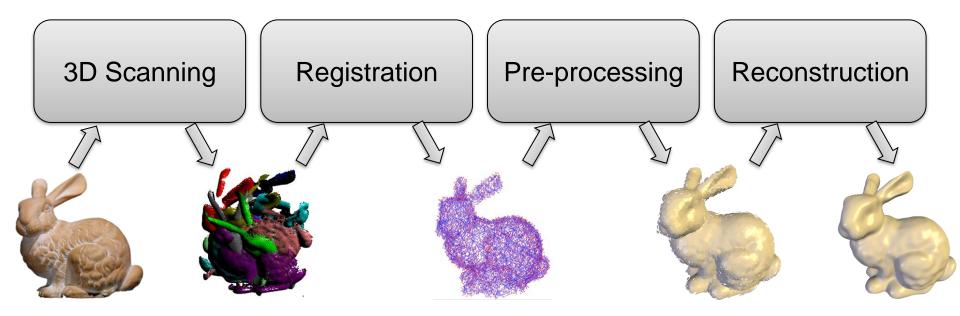
Acquisition from the real world

Modeling applications



Shape Acquisition

• Digitalizing real world objects



• 3D Scanning

Optical Scanning

+ Precise

- Small objects - Glossy objects

+ Fast

Active

Passive

ETH zürich

• Optical Scanning – Active Systems

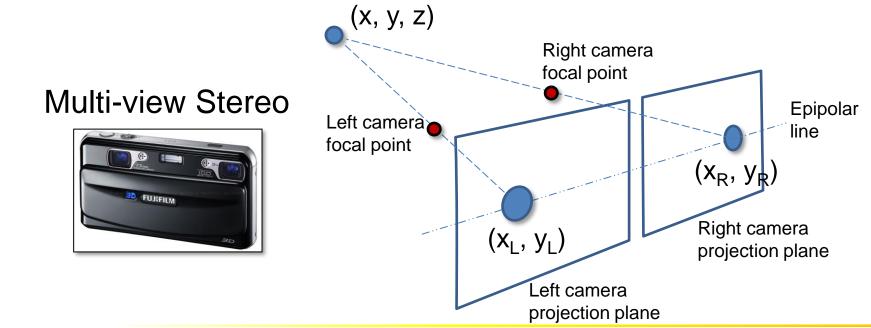
LIDAR

Measures the time it takes the laser beam to hit the object and come back

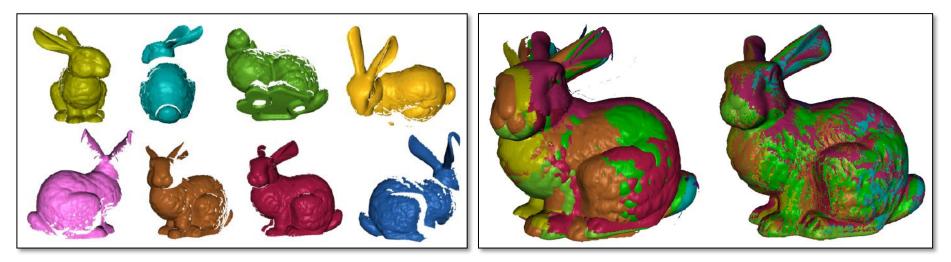
Triangulation Laser

Projected laser beam is photographed, giving the distance of the pattern

• Optical Scanning – Passive Systems

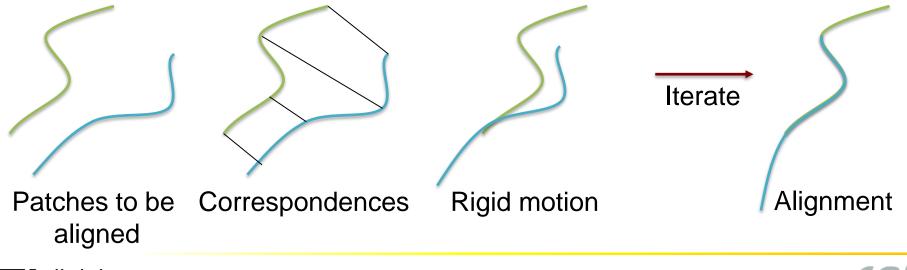


- Registration
 - Bringing scans into a common coordinate frame



• Registration

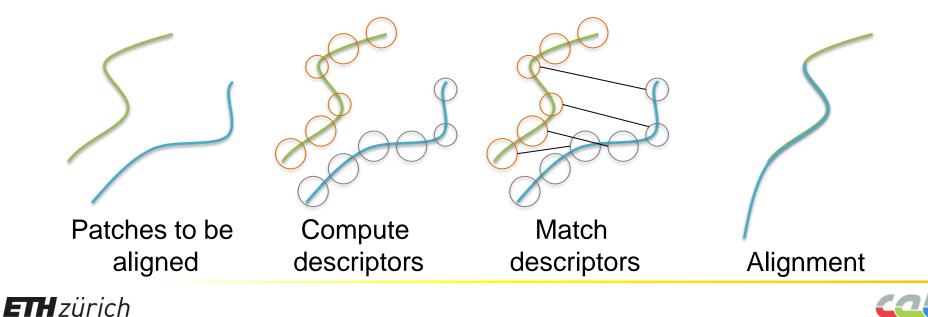
Iterative Closest Point Algorithms



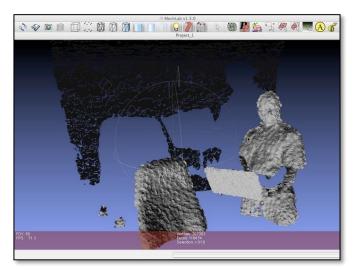
ETH zürich

• Registration

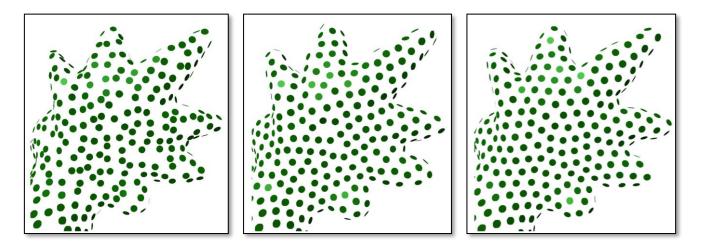
Feature-based Methods



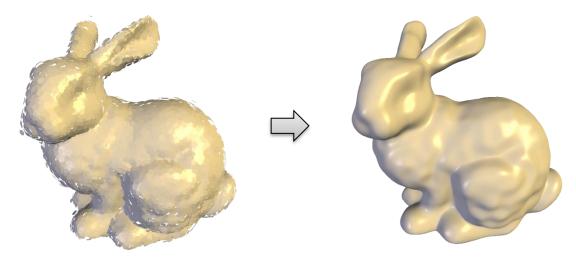
- Pre-processing
 - Cleaning, repairing, resampling



- Pre-processing
 - Sampling for accurate reconstructions

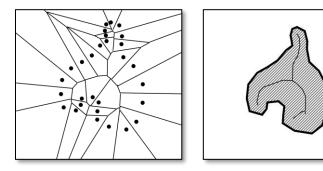


- Reconstruction
 - Mathematical representation for a shape



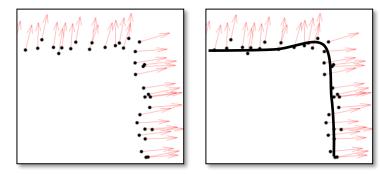
Reconstruction

Connect-the-points Methods



- + Theoretical error bounds
- Expensive
- Not robust to noise

Approximation-based Methods



- + Efficient to compute
- + Robust to noise
- No theoretical error bounds

ETH zürich

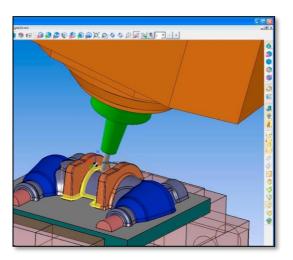
Modeling Tools

Modeling tools

Sculpting

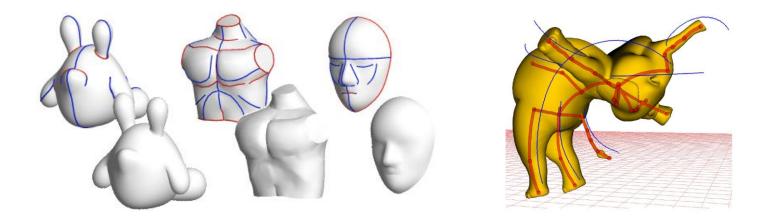
CAD/CAM

Procedural

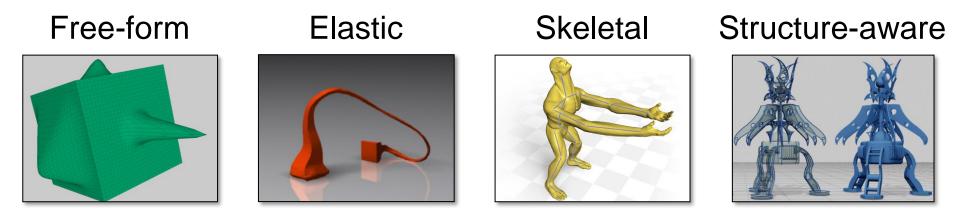


ETH zürich

Interactive & sketch-based interfaces

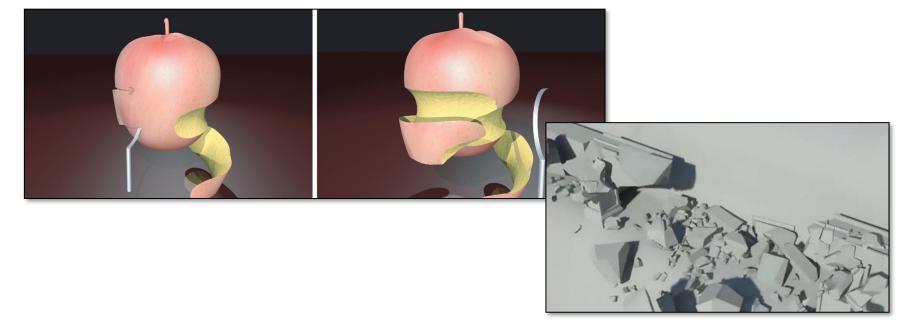


Deformations

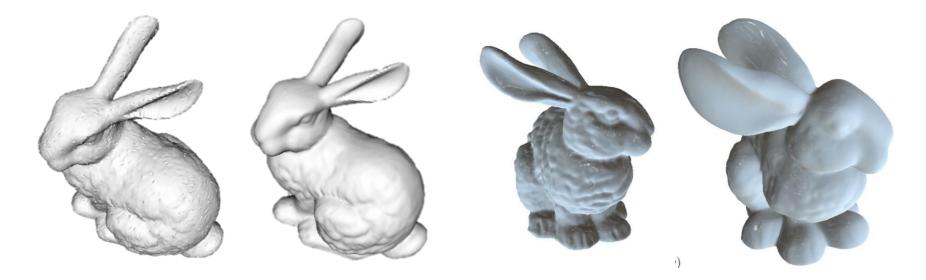


More structure

Cutting & fracturing



Smoothing & filtering



- Filtering with the Laplace-Beltrami operator
 - Laplace-Beltrami operator analogue of Laplace
 - Operates on functions on a manifold

Hzürich

E

- Each manifold *M* has a different LB operator
- Described by the eigenvalues/eigenfunctions

Laplace-Beltrami Eigenfunctions Eigenvalues

 $\Delta_M \phi(x) = \lambda \phi(x)$

- Filtering with the Laplace-Beltrami operator
 - Fourier basis are eigenfunctions of Laplace

$$\Delta e^{i2\pi wx} = \frac{\partial^2 e^{i2\pi wx}}{\partial^2 x} = -(2\pi w)^2 e^{i2\pi wx}$$

– For manifolds: Laplace-Beltrami

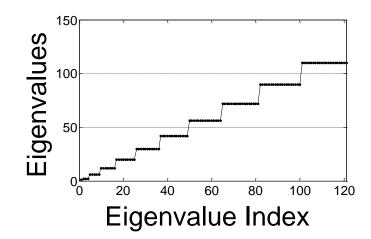
Hzürich

E

Laplace-Beltrami Eigenfunctions Eigenvalues

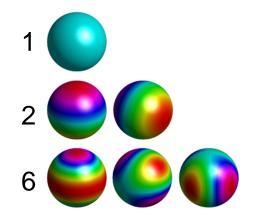
 $\Delta_M \phi(x) = \lambda \phi(x)$

 Filtering with the Laplace-Beltrami operator Sphere

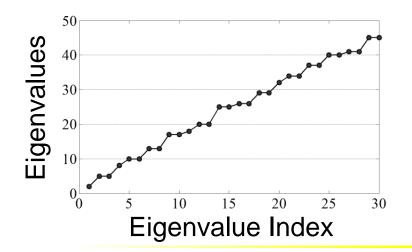


ETH zürich

Eigenfunctions

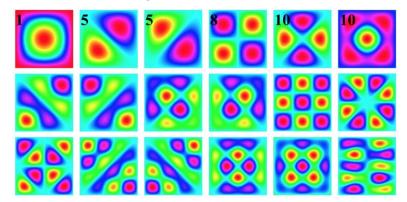


 Filtering with the Laplace-Beltrami operator Square

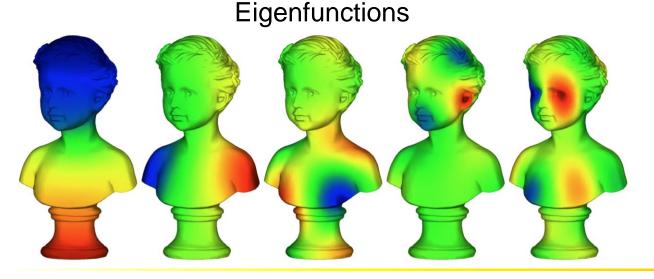


ETH zürich

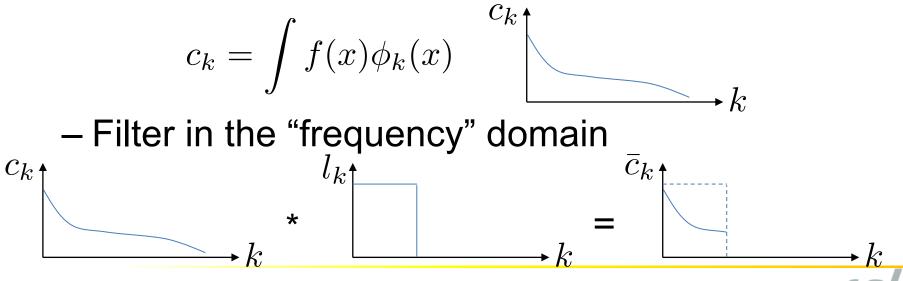
Eigenfunctions



 Filtering with the Laplace-Beltrami operator Surfaces



- Filtering with the Laplace-Beltrami operator
 - Analogue of Fourier transform on manifolds



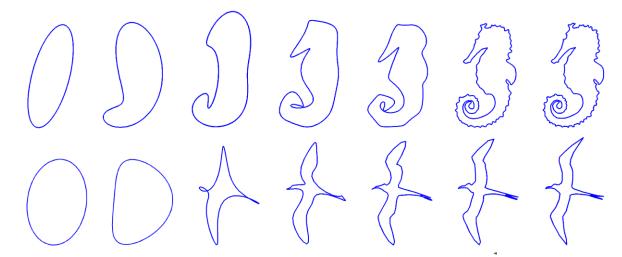
ETH zürich

- Filtering with the Laplace-Beltrami operator
 - Allows multi-scale analysis on manifolds
 - Coordinate functions

$$f_1(x \in M) = \mathbf{x}_x \quad f_2(x \in M) = \mathbf{x}_y \quad f_3(x \in M) = \mathbf{x}_z$$

Filter coordinate functions (coordinates of the points) on the manifold

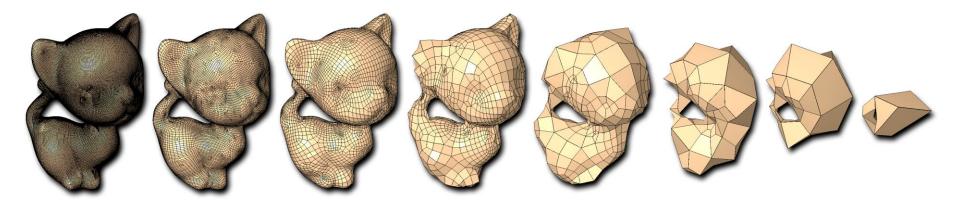
- Filtering with the Laplace-Beltrami operator
 - Filter coordinates of the points on the manifold



- Filtering with the Laplace-Beltrami operator
 - Filter coordinates of the points on the manifold

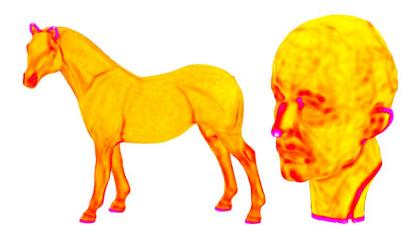


Compression & Simplification

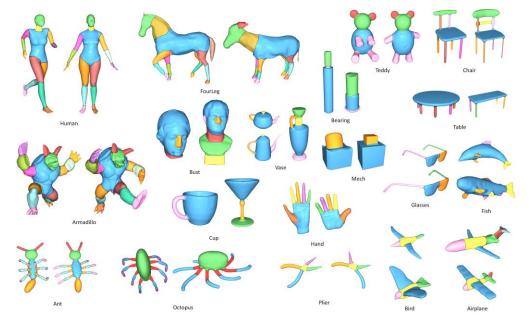


• Differential Properties

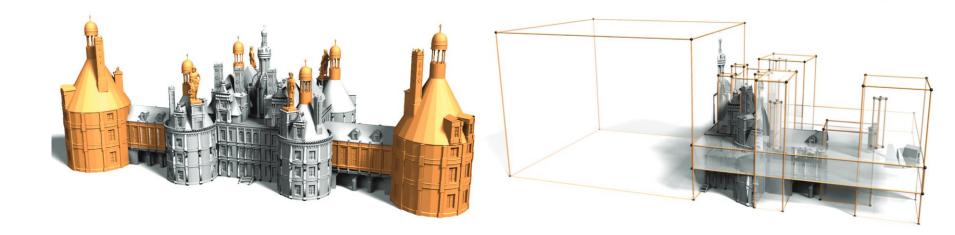
Mean Absolute Curvature



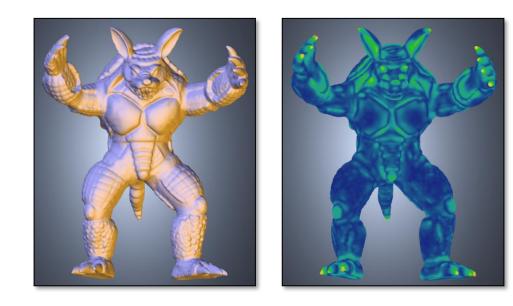
Segmentation



• Symmetry and structure detection



Saliency



Feature Extraction

