Visual Computing:

The Digital Image
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Digital cameras are the best
sensors ever!

(Example video)

With a few problems...

I n f Informatik
Computer Science


extra/EnemyOfTheState3Dbag.flv

Transmission interference




Compression artefacts
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Spilling




Scratches, Sensor noise
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Resolution =2 Super resolution?




Super resolution
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ResPlus_Runtime.avi

Removing motion blur

Cropped subwindow

Original image

[Images from Amit Agrawal]
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After motion blur removal




Removing motion blur

Coded Exposure Photography:

Assisting Motion Deblurring using Fluttered Shutter
Raskar, Agrawal, Tumblin (Siggraph2006)

Short Exposure Traditional

T — R TS

Captured
Photos

Deblurred
Results

Image is dark
and noisy

Artifacts and some Spati]a%
frequencies are lost



Fluttered Shutter Camera

Raskar, Agrawal, Tumblin Siggraph2006
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Ferroelectric shutter in front of the lens is turned
opaque or transparent ii a rapid binary sequence



Removing motion blur

Coded Exposure Photography:

Assisting Motion Deblurring using Fluttered Shutter
Raskar, Agrawal, Tumblin (Siggraph2006)

Short Exposure Traditional

T — R TS

Captured
Photos

Deblurred
Results

Result has Banding
Artifacts and some Spati]éll
frequencies are lost

Image is dark
and noisy



Python is Your Friend

* Run python:

S python in aterminal or use an online Python
notebook (e.g. Microsoft Azure notebook)

 Download any simple image

* Load it into Python:
>> 1mport cv2
>> img = cv2.imread (‘foo.jpg’)

ETH
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Unassessed Assignment

* Display the image in Python:
>> cvZ2.1lmshow (‘My 1mage’, 1mg)
>> cvZ2.waltKey (0)

* Print the image data array:
>> 1mg

* Print the size of the image array and create a
subimage:

>> 1mg.shape

>> subimg = img[72:92, 62:82]

ETH :




What is an image?

17



Image as 2D signal

* Signal: function depending on some variable
with physical meaning

* |mage: continuous function
2 variables: xy - coordinates
3 variables: xy + time (video)

* Brightness is usually the value of the function

* But can be other physical values too:
temperature, pressure, depth ...

ETH :




Example 2D Images
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What is an image?

* A picture or pattern of a value varying in space
and/or time.

* Representation of a function
f:R"—>S
* |n digital form, eg:
{1, ..., X}x{1, ..., Y}S.
* For greyscale images, n =2, S =9*.

ETH




What is a pix-el?




Not a little square!

A Pixel Is Not A Little
Square, A Pixel Is Not A
Little Square, A Pixel Is Not
A Little Square! (And a
Voxel is Not a Little Cube),
— Alvy Ray Smith,
MS Tech Memo 6, Jul 17, 1995

A Pixel Is Not A Little Square,
A Pixel Is Not A Little Square,
A Pixel Is Not A Little Square!
(And a Voxel is Not a Little Cube)*
Technical Memo &
Aloy Ray Snith

Tuly 17, 1935
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Not a little square!

ETH

Gaussian reconstruction filter

[llustrations: Smith, MS Tech Memo 6, Jul 17, 1995
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Not a little square!
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Cubic reconstruction filter
[llustrations: Smith, MS Tech Memo 6, Jul 17, 1995




Not a little square!
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Where do images come from?

* Digital cameras

* MRI scanners

 Computer graphics packages
* Body scanners

* Laser range finders

* Many more...

ETH
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Where do images come from?

* Digital cameras

* MRI scanners

 Computer graphics packages
* Body scanners

* Laser range finders

* Many more...
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The digital camera

* A Charge Coupled Device (CCD).

Sensor

s \\\\\\\\\\\\\\5 array
Nk
| Image array

ADC
Lens
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Full-Frame CCD Architecture

‘—Slngle Pixel Element

Parallel CCD

Shift Register Parallel Shift

Register Clock
Control

Parallel
Shift
Direction

Serial Shift
Serial CCD Register Clock

Shift Register Control
Figure 1

Output
Amplifier

http://mww.astro.virginia.edu/class/oconnell/astr121/im/CCD-fullframearc-FSU.jpg
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Capturing photons



http://www.algonet.se/~sirius/eaae.htm
http://solar.physics.montana.edu/nuggets/2000/001201/001201.html

The sensor array

e Can be <1cm?.

* An array of photosites.

 Each photosite is a
bucket of electrical
charge.

* They contain charge
proportional to the
incident light intensity
during exposure.

ETH
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Analog to Digital Conversion

e The ADC measures the
charge and digitizes the
result.

* Conversion happens line
by line.

 The charges in each
photosite move down

through the sensor array.

ETH

34



+
L] [+

ADC

RAM

35



Blooming

* The buckets have finite capacity

* Photosite saturation causes blooming




Bleeding or smearing

Smeanng Example

B

During transit buckets still accumulate some charges
Influenced by time ‘in transit’ versus integration time
Effect is worse for short shutter times (only problem with electronic shutter)
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Dark Current
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http://www.algonet.se/~sirius/eaae.htm
http://solar.physics.montana.edu/nuggets/2000/001201/001201.html

Dark Current

* CCDs produce thermally-generated charge.

* They give non-zero output even in

darkness.
* Partly, this is the dark current.
* Fluctuates randomly.

ETH

Camera Efficiency (percent)
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e How can we reduce dark current? pemmmsmeisemeie



http://www.algonet.se/~sirius/eaae.htm

CMOS

Same sensor elements as CCD

Each photo sensor has its own amplifier
More noise (reduced by subtracting ‘black’ image)
Lower sensitivity (lower fill rate)

Uses standard CMOS technology
Allows to put other components on chip

__________________________

‘Smart’ pixels [ iiiiiiiiii

Irnager
(350028 Z)

R

11 i sERINERERINN

Canon sensor
120Mpix@9.5fps burst
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CCD vs. CMOS

Mature technology
Specific technology

High production cost
High power consumption
Higher fill rate

Blooming

Sequential readout

More recent technology
Standard IC technology
Cheap

Low power

Less sensitive

Per pixel amplification
Random pixel access
Smart pixels

On chip integration
with other components




CMOS video sensor issues

* Rolling shutter

— Sequential read-out of lines


The Foundry - Overview.flv

DVS camera

Event-based, 6-DOF Pose Tracking
for High-Speed Maneuvers

Elias Mueggler, Basil Huber and Davide Scaramuzza

ROBOTICS &
PERCEPTION
GROUP

rpg.ifi.uzh.ch

University of ¥
Zufich™ roboticse =

)
Department of Informatics P Rasserch

DVS event camera from INI labs (spin-off UNIZ/ETHZ inst. neuro-inf.)

m Camera inspired by human visual system




Sampling 1D

Sample D ¢

Sampling in 1D takes a function, and returns a vector whose elements are
values of that function at the sample points

ETH ¢




1D Example: Audio

|

frequencies

|

high




Sampled representations

* How to store and compute with continuous functions?

e Common scheme for representation: samples
— write down the function’s values at many points

M e

l Sampling

ﬂ Steve Marschner e
4

[FVDFH fig.14.14b / Wolberg]



Reconstruction

* Making samples back into a continuous function
— for output (need realizable method)
— for analysis or processing (heed mathematical method)

— amounts to “guessing” what the function did in
between

Reconstruction

e

[FVDFH fig.14.14b / Wolberg]



Sampling in digital audio

e Recording: sound to analog to samples to disc

* Playback: disc to samples to analog to sound

again

— how can we be sure we are filling in the gaps correctly?

%L MAMAL — [voeom| — el @

© - Lyt —

© 2006 Steve Marschner e
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Sampling and Reconstruction

 Simple example: a sine wave

AWAWAWAWAWA
[VARVARVERVERVERV.

ETH




Undersampling

 What if we “missed” things between the
samples?

* Simple example: undersampling a sine wave

— unsurprising result: information is lost

AWAWAWAWAWA
VV/\/\/\/V

ﬂ Steve Marschner e
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Undersampling

 What if we “missed” things between the samples?
* Simple example: undersampling a sine wave

— unsurprising result: information is lost
— surprising result: indistinguishable from lower frequency

SVErZVAlyRY Y

ﬂ Steve Marschner e
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Undersampling

 What if we “missed” things between the samples?

* Simple example: undersampling a sine wave
— unsurprising result: information is lost
— surprising result: indistinguishable from lower frequency
— also was always indistinguishable from higher frequencies
— aliasing: signals “traveling in disguise” as other frequencies

AAANAVANA AN
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What’'s happening?

InputS|gnaI

I" VY |J|1“HI||

Plot as image:

=

H

x = 0:.05:5: imagesc(sin((Z."X).*>}\

Alias!
Not enough samples

vy Vv vyviyVyyyivy




Sampling 2D

Sample..)D

Sampling in 2D takes a function and
returns an array; we allow the

array to be infinite dimensional and to
have negative as well as positive indices.




Greyscale digital image




Reconstructing continuous signal

* e.g. Bilinear interpolation

(i,7 + 1) (i+1,7+1)
(z,9)
a Ib
(i-) i+ 1,)
flz,y) = (1 —a)(1=0) f[fl4,J]
+ab fli+ 1,5+ 1]
+(1 —a)b  fli, 5+ 1]




Nyquist Frequency

(a.k.a. Nyquist-Shannon sampling theorem)

e Half the sampling frequency of a discrete
signal processing system

* Signal’s max frequency (bandwidth) must
be smaller* than this

ETH “Inlaterlectures: coping when it’s >=.




Sampling grids

EEEEEEX » ° e ®
o0 0000 O0COC0® ®
AR EEEEE e 006 ¢ e, .
° o0 P *®
o0 000000 - e ® -
o0 o0 e
o000 00O0OC e ®
® o0 o0 . o
( BN BN BN BN BN BN BN | s o o o a . oo
0060600 00 i.. [ ]
Y E RN » » .'
Cartesian sampling Hexagonal sampling Non-uniform sampling
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Retina-like sensors
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Quantization

* Real valued function will get digital values —
integer values

e Quantization is lossy!!

— After quantization, the original signal cannot be
reconstructed anymore

e This is in contrast to sampling, as a sampled but
not quantized signal can be reconstructed.

* Simple quantization uses equally spaced levels
with k intervals

k = 2°
ETH




Quantization

11

10

01

00
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Quantization




Quantization




Image Properties

* I[mage resolution

 Geometric resolution: How many pixels per area

* Radiometric resolution: How many bits per pixel

68




Image resolution

512x512

512x1024

69




Geometric resolution

70



Radiometric resolution

71



Aliasing and SNR

 What is the disadvantage of low sampling
resolution?

 What is the disadvantage of high sampling
resolution?

* Lossless vs. Lossy

— Name some formats?

ETH
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Unassessed Assighment

Use python to change the geometric and
radiometric quantization resolution in one of
your images. For each level of sampling and
guantization, plot the image function, asin
slides 71 & 72, and compare the
approximations to the true intensity function
that you get at each level.




Usual quantization intervals

Grayscale image

— 8 bit = 278 = 256 grayvalues

Color image RGB (3 channels)

— 8 bit/channel = 27224 = 16.7M colors
12bit or 16bit from some sensors

Nonlinear, for example log-scale




Photo: Paulo Barcellos Jr.
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http://upload.wikimedia.org/wikipedia/commons/d/d4/New_York_City_at_night_HDR_edit1.jpg

Image Noise

e A common model is additive Gaussian noise:

1(x,y)=f(x,y)+cC
where ¢ ~ N (0,5%). So that p(c) = (275?) e /%

e Poisson noise:

. Ae™
(shot noise) p(k) = '
K |
e -
0.30f | o \=4 |
< 0.25F ".I © A=10 |

] \
x0200 |
015 ¢ ®

0.0 / | %

o.05f / % o e

/ A g \O-.O 1
000 2econn . ®aaaaaas Loan
0 5 10 15 20




Image Noise

Rician noise:
(appears in MRI)

Crigirzl

20
40
G0
g0
100

120

20 40 &O S0 100 120
Range: {0, 833

|
p(l)=—exp
O

Gaussian noise

20
40
g0
g0
100

120

20 40 BO S0 100 120
Range: {-18, 103}

—(1°+ 7)), (If

2 0 2

20 o

Riziarn noise

20

40

G0

a0

100

120

20 40 6O S0 100 120
Farnge: {0, 1057
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Image Noise

* Multiplicative noise:
| =f + fc

* Quantization errors
* Impulse “salt-and-pepper” noise

* The signal to noise ratio (SNR) s is an
index of image quality

X

F 1 Y
S=—, where F =— f (X,
- XYZ;; (%)

F
Often used instead: Peak Signal to Noise Ratio (PSNR) Speak — __Mmax

ETH i




Colour Images




Low energy By AT e High energy
o
l
Frequency (s™') :
3 x 10" 3 x 10" 3 x 10" | 3 x 10'® 3 x 10"

1 | | 1 | (Sl g | 1 | |
Radio Gam
wZSes Microwaves Infrared Ultraviolet | X-rays raysma

| | | | 1 1 | 1 1 | |
165107 107 107 10" 107 107 10201070 0 1008

Wavelength (m)

ETn
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Color cameras

We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

... and X3

ETH




Prism color camera

Separate light in 3 beams using dichroic prism
Requires 3 sensors & precise alignment
Good color separation

| Sreen




Filter mosaic

Coat filter directly on sensor

‘ Bayer filter _ o
Demosaicing (obtain full colour & full resolution image)

More colors:

ORIGINAL CCD ARRAY WITH

ALIASED IMAGE
IMAGE BAYER PATTERN

SHOWING LOCATION

OF WHITE/BLACK




Filter wheel

Rotate multiple filters in front of lens

Allows more than 3 colour bands

Only suitable for static scenes




Prism vs. mosaic vs. wheel

approach Prism Mosaic Wheel
# sensors 3 1 1
Separation High Average Good
Cost High Low Average
Framerate High High Low
Artefacts Low Aliasing Motion
Bands 3 3 3 or more
High-end Low-end Scientific

cameras cameras applications



color CMOS sensor
Foveon’s X3

Silicon color absorption Foveon X3 sensor stack

|-7 27 microns 4-'

Blue sensor

<Green |
absorption

<Red !
absorption

Red sensor

Silicon wafer

k— suozoru g> —

better image quality

Resolution Color data




The Human Eye

NERVE

Reproduced by permission, the American Society of Photogrammetryand
Remote Sensing. A.L. Nowicki, “Stereoscopy.” Manual of Photogrammetry,
Thompson, Radlinski,and Speert (eds.), third edition, 1966.

FV

20mm

I Smm

Helmoltz's
Schematic
Eye
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1.8 — Cones
Blind spot ., = ROS
i %

A *,

The distribution of rods
and cones across the
retina

Number of receptors (mm? x 10°)

| | R, B

-60 -40 -20 O 20 40 60
Angle relative to fovea (deg)

Reprinted from Foundations of Vision, by B. Wandell, Sinauer
Associates, Inc., (1995). © 1995 Sinauer Associates, Inc.

Cones in the
fovea

Reprinted from Foundations of Vision, by B. Wandell, Sinauer
Associates, Inc., (1995). © 1995 Sinauer Associates, Inc.



More eyes in nature...

More info:

Animal Eyes

Sea fan

H 'y Fernald, R. D. 2006. Casting a Genetic Light on the Evolution of Eyes. Science 313, 1914-1918



Next week:

-'

Image Segmentation
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