Visual Computing:

Image Segmentation

Prof. Marc Pollefeys
Classification outcomes
Greylevel Histograms
Positives and Negatives
ROC curve

TP fraction

FP fraction
Pixel connectivity

• We need to define which pixels are neighbors.
• Are the dark pixels in this array connected?

Warning: Pixels are samples, not squares.
Pixel connectivity

- We need to define which pixels are neighbors.
- Are the dark pixels in this array connected?
Pixel Neighborhoods

4-neighborhood

8-neighborhood
Pixel paths

- A 4-connected path between pixels p_1 and p_n is a set of pixels $\{p_1, p_2, ..., p_n\}$ such that p_i is a 4-neighbor of p_{i+1}, $i=1,\ldots,n-1$.

- In an 8-connected path, p_i is an 8-neighbor of p_{i+1}.
Connected regions

• A region is 4-connected if it contains a 4-connected path between any two of its pixels.

• A region is 8-connected if it contains an 8-connected path between any two of its pixels.
Connected regions

• Now what can we say about the dark pixels in this array?

• What about the light pixels?
Connected components labelling

• Labels each connected component of a binary image with a separate number.
Foreground labelling

• Only extract the connected components of the foreground
Goose detector
Goose detector
Region Growing

• Start from a seed point or region.

• Add neighboring pixels that satisfy the criteria defining a region.

• Repeat until we can include no more pixels.
def regionGrow(I, seed):
 X, Y = I.shape
 visited = np.zeros((X,Y))
 visited[seed] = 1
 boundary = []
 boundary.append(seed)
 while len(boundary) > 0:
 nextPoint = boundary.pop()
 if include(nextPoint, seed):
 visited[nextPoint] = 2
 for (x, y) in neighbors(nextPoint):
 if visited[x,y] == 0:
 boundary.append((x, y))
 visited[x,y] = 1
Region Growing example

- Pick a single seed pixel
- Inclusion test is up to you:

```python
def include(p, seed):
    test = ??
    return test
```
Variations

- Seed selection
- Inclusion criteria
- Boundary constraints and snakes
Seed selection

• Point and click seed point
• Seed region
 • By hand
 • Automatically, e.g., from a conservative thresholding.
• Multiple seeds
 • Automatically labels the regions
Inclusion criteria

• Greylevel thresholding

• Greylevel distribution model
 • Use mean μ and standard deviation σ in seed region:
 • Include if $(l(x, y) - \mu)^2 < (n\sigma)^2$. Eg: $n = 3$.
 • Can update the mean and standard deviation after every iteration.

• Color or texture information
Inclusion criteria?

e.g. \((a \cdot l + b \cdot x + c \cdot y + d)^2 < \text{threshold}\)
(keep refitting a, b, c to included pts)
Snakes

• A snake is an *active contour*

• It is a polygon, i.e., an ordered set of points joined up by lines

• Each point on the contour moves away from the seed while its image neighborhood satisfies an inclusion criterion

• Often the contour has smoothness constraints
Snakes

• The algorithm iteratively minimizes an energy function:

\[E = E_{tension} + E_{stiffness} + E_{image} \]

• See Kass, Witkin, Terzopoulos, IJCV 1988
Example
Interim Summary

• Segmentation is hard
• But it is easier if you define the task carefully
 • Is the segmentation task binary or continuous?
 • What are the regions of interest?
 • How accurately must the algorithm locate the region boundaries?
• Research problems remain!
Foreground-Background segmentation

Roundabout example

- **Input**

- **Output**
Distance Measures

Plain Background-subtraction metric:

\[I_\alpha = \left| I - I_{bg} \right| > T \]

\[T = [20 20 10] \quad \text{(for example)} \]

\[I_{bg} = \text{Background Image} \]
Where Does I_{bg} Come From?

When possible, fit a Gaussian model per pixel, just as we did for an entire green-screen:

- mean $\mu \rightarrow I_\mu$
- standard deviation $\sigma \rightarrow I_\Sigma$

Note: Outdoor backgrounds change over time!
Distance Measures

Plain Background-subtraction metric:

\[I_\alpha = |I - I_{bg}| > T \]

\[T = [20 \ 20 \ 10] \quad \text{(for example)} \]
\[I_{bg} = \text{Background Image} \]

or better

\[I_\alpha = \sqrt{\left(I - I_{bg}\right)^T \Sigma^{-1} \left(I - I_{bg}\right)} > T = 4 \quad \text{(for example)} \]

\[\Sigma \quad \text{background pixel appearance covariance matrix} \]
\[\text{(computed separately for each pixel, from many examples)} \]
\[\text{(sometimes need more than one Gaussian, use Gaussian Mixture Models)} \]
A Word About Shadows
A Word About Shadows

What happened to the color here?

Gaussian’s symmetry could mislead a little…

(Brighter-only example)
Adding spatial relations

Markov Random Fields

• Markov chains have 1D structure
 – At every time, there is one state.
 – This enabled use of dynamic programming.

• Markov Random Fields break this 1D structure.
 – Field of sites, each of which has a label, simultaneously.
 – Label at one site dependent on others, no 1D structure to dependencies.
 – This means no optimal, efficient algorithms, except for 2-label problems.

Adapted from Derek Hoiem
Markov Random Fields

\[
\text{Energy}(\mathbf{y}; \theta, \text{data}) = \sum_{i} \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]

Node \(y_i\): pixel label

Edge: constrained pairs

Cost to assign a label to each pixel
Cost to assign a pair of labels to connected pixels
Markov Random Fields

- Example: “label smoothing” grid

\[\text{Unary potential} \]

\[
\begin{array}{|c|c|}
\hline
0 & 1 \\
\hline
1 & 0 \\
\hline
\end{array}
\]

\[\text{Pairwise Potential} \]

\[
\begin{array}{c|ccc}
0 & 0 & K \\
\hline
0 & K & 0 \\
1 & K & 0 \\
\hline
\end{array}
\]

\[
\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i, j \in \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]

Slides from Derek Hoiem
Solving MRFs with graph cuts

\[\text{Energy}(y; \theta, \text{data}) = \sum_{i} \psi_{1}(y_{i}; \theta, \text{data}) + \sum_{i, j \in \text{edges}} \psi_{2}(y_{i}, y_{j}; \theta, \text{data}) \]
Solving MRFs with graph cuts

\[
\text{Energy}(y; \theta, \text{data}) = \sum_i \psi_1(y_i; \theta, \text{data}) + \sum_{i,j \text{edges}} \psi_2(y_i, y_j; \theta, \text{data})
\]

Slides from Derek Hoiem
Foreground-Background segmentation

The code does the following:

• background RGB Gaussian model training (from many images)
• shadow modeling (hard shadow & soft shadow).

• Graphcut foreground-background segmentation

http://www.cs.unc.edu/~lguan/Research.files/Research.htm#BS
Foreground-Background segmentation

Background Image Foreground Image Background Weight Shadow Weight Foreground Result Graphcut (non-black) Blob finding (white)
Foreground-Background segmentation
Inclusion criteria?

e.g. \((a.l+b.x+c.y+d)^2 < \text{threshold}\)
(keep refitting a, b, c to included pts)
GrabCut – interactive foreground segmentation
Problem

Fast & Accurate?
What GrabCut does

| Magic Wand
(198?) | Intelligent Scissors
Mortensen and Barrett (1995) | GrabCut |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User Input</td>
<td>Result</td>
<td>Result</td>
</tr>
<tr>
<td>![Image of user input]</td>
<td>![Image of result]</td>
<td>![Image of result]</td>
</tr>
<tr>
<td>Regions</td>
<td>Boundary</td>
<td>Regions & Boundary</td>
</tr>
</tbody>
</table>

Slides from Carsten Rother (MSR)
Graph Cuts

Boykov and Jolly (2001)

Image

Foreground (source)

Min Cut

Background (sink)

Cut: separating source and sink; Energy: collection of edges

Min Cut: Global minimal energy in polynomial time

Slides from Carsten Rother (MSR)
Iterated Graph Cut

User Initialisation

K-means for learning colour distributions

Graph cuts to infer the segmentation

Slides from Carsten Rother (MSR)
Iterated Graph Cuts

Result

Guaranteed to converge

Energy after each Iteration

Slides from Carsten Rother (MSR)
Colour Model

Gaussian Mixture Model (typically 5-8 components)

Iterated graph cut

Slides from Carsten Rother (MSR)
Moderately straightforward examples

... GrabCut completes automatically

Slides from Carsten Rother (MSR)
Difficult Examples

Camouflage & Low Contrast

Fine structure

No telepathy

Initial Rectangle

Initial Result

Slides from Carsten Rother (MSR)
Evaluation – Labelled Database

Available online: http://research.microsoft.com/vision/cambridge/segmentation/

Slides from Carsten Rother (MSR)
Comparison

Boykov and Jolly (2001) | GrabCut

User Input

Result

Error Rate: 0.72% Error Rate: 0.72%

Slides from Carsten Rother (MSR)
Natural Image Matting

Solve

Ruzon and Tomasi (2000): Alpha estimation in natural images

Slides from Carsten Rother (MSR)
Fit a smooth alpha-profile with parameters
Dynamic Programming

Result using DP Border Matting

Noisy alpha-profile

Regularisation

Slides from Carsten Rother (MSR)
Results

Slides from Carsten Rother (MSR)
Switching to Spatial-domain only:

Morphological Operations
What Are Morphological Operators?

- Local pixel transformations for processing region shapes
- Most often used on binary images
- Logical transformations based on comparison of pixel neighborhoods with a pattern.
Simple Operations - Examples

• Eight-neighbor erode
 – a.k.a. Minkowsky subtraction

• Erase any foreground pixel that has one eight-connected neighbor that is background.
8-neighbor erode

Threshold

Erode ×1 Erode ×2 Erode ×5
8-neighbor dilate

- Eight-neighbor dilate
 - a.k.a. Minkowsky addition

- Paint any background pixel that has one eight-connected neighbor that is foreground.
8-neighbor dilate

Dilate ×1 Dilate ×2 Dilate ×5
Why?

• Smooth region boundaries for shape analysis.
• Remove noise and artefacts from an imperfect segmentation.
Structuring Elements

- Morphological operations take two arguments:
 - A binary image
 - A *structuring element*.
- Compare the structuring element to the neighborhood of each pixel.
- This determines the output of the morphological operation.
Structuring elements

- The structuring element is also a binary array
- A structuring element has an origin
Binary images as sets

- We can think of the binary image and the structuring element as sets containing the pixels with value 1.

\[I = \{(1,1), (2,1), (3,1), (2,2), (3,2), (4,4)\} \]
Some set notation

• Union and intersection:
 \[I_1 \cup I_2 = \{ x : x \in I_1 \text{ or } x \in I_2 \} \]
 \[I_1 \cap I_2 = \{ x : x \in I_1 \text{ and } x \in I_2 \} \]

• Complement
 \[I^c = \{ x : x \notin I \} \]

• Difference
 \[I_1 \setminus I_2 = \{ x : x \in I_1 \text{ and } x \notin I_2 \} \]

• We use \(\phi \) for the empty set.
Fitting, Hitting and Missing

• S fits \(I \) at \(x \) if
 \[
 \{ y : y = x + s, s \in S \} \subseteq I
 \]

• S hits \(I \) at \(x \) if
 \[
 \{ y : y = x - s, s \in S \} \cap I \neq \emptyset
 \]

• S misses \(I \) at \(x \) if
 \[
 \{ y : y = x - s, s \in S \} \cap I = \emptyset
 \]
Fitting, Hitting and Missing

Image

0	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0

Structuring element

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Erosion

• The image $E = I \ominus S$ is the erosion of image I by structuring element S.

\[
E(x) = \begin{cases}
1 \text{ if } S \text{ fits } I \text{ at } x \\
0 \text{ otherwise }
\end{cases}
\]

$E = \{x : x + s \in I \text{ for every } s \in S\}$
Example

Structuring element
Example

Structuring element

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dilation

• The image \(D = I \oplus S \) is the *dilation* of image \(I \) by structuring element \(S \).

\[
D(x) = \begin{cases}
1 & \text{if } S \text{ hits } I \text{ at } x \\
0 & \text{otherwise}
\end{cases}
\]

\[
D = \{x : x - s, \ y \in I \text{ and } s \in S\}
\]
Example

Structuring element

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
Example

Structuring element

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
Opening and Closing

• The *opening* of I by S is

$$I \circ S = (I \ominus S) \oplus S$$

• The *closing* of I by S is

$$I \bullet S = (I \oplus S) \ominus S$$
Example

close

Structuring element

open
Morphological filtering

• To remove holes in the foreground and islands in the background, do both opening and closing.

• The size and shape of the structuring element determine which features survive.

• In the absence of knowledge about the shape of features to remove, use a circular structuring element.
Count the Red Blood Cells
Granulometry

- Provides a size distribution of distinct regions or “granules” in the image.
- We open the image with increasing structuring element size and count the number of regions after each operation.
- Creates a “morphological sieve”
def granulo(I, T, maxRad):
 B = (I > T) # Segment the image I
 # Open the image at each structuring element size up to a maximum and count the remaining regions.
 numRegions = []
 for x in range(1, maxRad + 1):
 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (x, x))
 O = cv2.morphologyEx(B, cv2.MORPH_OPEN, kernel)
 numComponents, _ = cv2.connectedComponents(O)
 numRegions.append(numComponents)
 return numRegions
Count the Red Blood Cells
Threshold and Label
Disc(11)
Disc(59)
Number of Regions

![Graph showing the relationship between Number of regions and Struct. Elt. radius. The graph indicates a decrease in the number of regions as the Struct. Elt. radius increases.](image)
Granulometric *Pattern Spectrum*
Hit-and-miss transform

• Searches for an exact match of the structuring element.

• $H = I \otimes S$ is the hit-and-miss transform of image I by structuring element S.

• Simple form of template matching.
Hit-and-miss transform

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[\times \begin{array}{c} 1 \ 0 \ 1 \end{array} \begin{array}{c} 1 \ 0 \ 1 \end{array} \begin{array}{c} 1 \ 0 \ 1 \end{array} = \begin{array}{c} 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \end{array} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[\times \begin{array}{c} 1 \ 0 \ 1 \end{array} \begin{array}{c} 1 \ 0 \ 1 \end{array} \begin{array}{c} 1 \ 0 \ 1 \end{array} = \begin{array}{c} 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \end{array} \]
Upper-Right Corner Detector

\[
\begin{array}{ccc}
 x & 0 & 0 \\
 1 & 1 & 0 \\
 x & 1 & x \\
\end{array}
\]

\[
\begin{array}{ccc}
 0 & 0 & 0 \\
 1 & 1 & 0 \\
 0 & 1 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
 0 & 1 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 0 \\
\end{array}
\]

J K
Thinning and Thickening

- Defined in terms of the hit-and-miss transform:
- The thinning of I by S is
 \[I \ominus S = I \setminus (I \ominus S) \]
- The thickening of I by S is
 \[I \oslash S = I \cup (I \oslash S) \]
- Dual operations:
 \[(I \ominus S)^C = I^C \ominus S \]
Sequential Thinning/Thickening

• These operations are often performed in sequence with a selection of structuring elements S_1, S_2, \ldots, S_n.

• Sequential thinning:

$$ I \ominus \{S_i : i = 1, \ldots, n\} = (((I \ominus S_1) \ominus S_2) \ldots \ominus S_n) $$

• Sequential thickening:

$$ I \oslash \{S_i : i = 1, \ldots, n\} = (((I \oslash S_1) \oslash S_2) \ldots \oslash S_n) $$
Sequential Thinning/Thickening

• Several sequences of structuring elements are useful in practice

• These are usually the set of rotations of a single structuring element.

• Sometimes called the *Golay alphabet.*
Sequential Thinning

- See morphologyEx in python.

0 iterations 1 iteration 2 iterations 5 iterations Inf iterations
Sequential Thickening
Skeletonization and the Medial Axis Transform

• The skeleton and *medial axis transform* (MAT) are stick-figure representations of a region $X \subset \mathbb{R}^2$.

• Start a grassfire at the boundary of the region.
• The skeleton is the set of points at which two fire fronts meet.
Skeletons
Medial axis transform

• Alternative skeleton definition:
 • The skeleton is the union of centres of maximal discs within X.
 • A *maximal* disc is a circular subset of X that touches the boundary in at least two places.

• The MAT is the skeleton with the maximal disc radius retained at each point.
Medial axis transform
Skeletonization using morphology

• Use structuring element $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

• The n-th skeleton subset is

$$S_n(X) = (X \ominus_n B) \setminus [(X \ominus_n B) \circ B]$$

• The skeleton is the union of all the skeleton subsets:

$$S(X) = \bigcup_{n=1}^{\infty} S_n(X)$$

\ominus_n denotes n successive erosions.
Reconstruction

• We can reconstruct region X from its skeleton subsets:

$$X = \bigcup_{n=0}^{\infty} S_n(X) \oplus_n B$$

• We can reconstruct X from the MAT.
• We cannot reconstruct X from $S(X)$.
DiFi: Fast 3D Distance Field Computation Using Graphics Hardware
Sud, Otaduy, Manocha, Eurographics 2004
MAT in 3D

from Transcendata Europe Medial Object
Price, Stops, Butlin Transcendata Europe Ltd
Applications and Problems

• The skeleton/MAT provides a stick figure representing the region shape.
• Used in object recognition, in particular, character recognition.
• Problems:
 • Definition of a maximal disc is poorly defined on a digital grid.
 • Sensitive to noise on the boundary.
• Sequential thinning output sometimes preferred to skeleton/MAT.
Example

Skeletons:

Thinned:
Next Week: Image Features