

3D Vision

Marc Pollefeys Daniel Barath

Spring 2024

Schedule

Feb 19	Introduction				
Feb 26	Geometry, Camera Model, Calibration				
Mar 4	Guest lecture + Features, Tracking / Matching				
Mar 11	Project Proposals by Students				
Mar 18	3DV conference				
Mar 25	Structure from Motion (SfM) + papers				
Apr 1	Easter break				
Apr 8	Dense Correspondence (stereo / optical flow) + papers				
Apr 15	Bundle Adjustment & SLAM + papers				
Apr 22	Student Midterm Presentations				
Apr 29	Multi-View Stereo & Volumetric Modeling + papers				
May 6	3D Modeling with Depth Sensors + papers				
May 13	Guest lecture + papers				
May 20	Holiday				

3D Vision– Class 2

Projective Geometry and Camera Model

points, lines, planes, conics and quadrics Transformations, camera model

Chapters 1, 2 and 5 in Hartley and Zisserman 1st edition Or Chapters 2, 3 and 6 in 2nd edition See also Chapter 2 in Szeliski book

Topics Today

- Lecture intended as a review of material covered in Computer Vision lecture
- Probably the hardest lecture (since very theoretic) in the class ...
- ... but fundamental for any type of 3D Vision application
- Key takeaways:
 - 2D primitives (points, lines, conics) and their transformations
 - 3D primitives and their transformations
 - Camera model and camera calibration

• 3D Projective Geometry

Camera Models & Calibration

Projections of planar surfaces

A. Criminisi. Accurate Visual Metrology from Single and Multiple Uncalibrated Images. PhD Thesis 1999.

ETH

Measure distances

A. Criminisi. Accurate Visual Metrology from Single and Multiple Uncalibrated Images. PhD Thesis 1999.

Discovering details

Piero della Francesca, La Flagellazione di Cristo (1460)

A. Criminisi. Accurate Visual Metrology from Single and Multiple Uncalibrated Images. PhD Thesis 1999.

Н

2D Euclidean Transformations

• Rotation (around origin)

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• Translation

$$\binom{x^{\prime\prime}}{y^{\prime\prime}} = \binom{x^{\prime}}{y^{\prime}} + \binom{t_x}{t_y}$$

"Extended coordinates"

$$\begin{pmatrix} x'' \\ y'' \\ 1 \end{pmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha & t_x \\ \sin \alpha & \cos \alpha & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Homogeneous Coordinates

Homogenous coordinates

$$\begin{pmatrix} x \\ y \end{pmatrix} \to w \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \quad , \ w \neq 0$$

Equivalence class of vectors

$$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -9 \\ 6 \\ -3 \end{pmatrix}$$

2D projective space:

 $\mathbb{P}^2 = \mathbb{R}^3 \setminus \{(0,0,0)\}$

Homogeneous Coordinates

(Homogeneous) representation of 2D line: ax + by + c = 0 $(a,b,c)^{\mathsf{T}}(x,y,1) = 0$

The point x lies on the line 1 if and only if $\mathbf{1}^T \mathbf{x} = \mathbf{0}$

Note that scale is unimportant for incidence relation $(a,b,c)^{\mathsf{T}} \sim k(a,b,c)^{\mathsf{T}}, "k \ ^1 \ 0 \qquad (x,y,1)^{\mathsf{T}} \sim k(x,y,1)^{\mathsf{T}}, "k \ ^1 \ 0$

Homogeneous coordinates $(x_1, x_2, x_3)^T$ but only 2DOF Inhomogeneous coordinates $(x, y)^T = (x_1/x_3, x_2/x_3)^T$

2D Projective Transformations

Definition:

A *projectivity* is an invertible mapping h from \mathbb{P}^2 to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1), h(x_2), h(x_3)$ do.

Theorem:

A mapping $h : \mathbb{P}^2 \to \mathbb{P}^2$ is a **projectivity** if and only if there exist a non-singular 3x3 matrix **H** such that for any point in P² represented by a vector x it is true that $h(x)=\mathbf{H}x$

Definition: Projective transformation

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \quad \text{or} \quad \mathbf{x'} = \mathbf{H} \mathbf{x} \quad \text{8DOF}$$

projectivity = collineation = proj. transformation = homography

Hierarchy of 2D Transformations

				transformed
Projective 8dof	$\begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}$	$egin{array}{l} h_{12}\ h_{22}\ h_{32} \end{array}$	$ \begin{bmatrix} h_{13} \\ h_{23} \\ h_{33} \end{bmatrix} $	squares
Affine 6dof	$\begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$	$egin{array}{c} a_{12} \ a_{22} \ 0 \end{array}$	$\begin{bmatrix} t_x \\ t_y \\ 1 \end{bmatrix}$	
Similarity 4dof	$\begin{bmatrix} sr_{11} \\ sr_{21} \\ 0 \end{bmatrix}$	sr_{12} sr_{22} 0	$\begin{bmatrix} t_x \\ t_y \\ 1 \end{bmatrix}$	
Euclidean 3dof	$\begin{bmatrix} r_{11} \\ r_{21} \\ 0 \end{bmatrix}$	r_{12} r_{22} 0	$ \begin{bmatrix} t_x \\ t_y \\ 1 \end{bmatrix} $	

invariants

Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio

Parallelism, ratio of areas, ratio of lengths on parallel lines (e.g. midpoints), linear combinations of vectors (centroids), **The line at infinity I**_∞

Ratios of lengths, angles, The circular points I,J

Absolute lengths, angles, areas

Working with Homogeneous Coordinates

Lines to Points, Points to Lines

Intersections of lines

Find x such that
$$\begin{cases} l_1^T x = 0 \\ l_2^T x = 0 \end{cases} x$$

1

$$x = l_1 \times l_2$$

• Line through two points

Find l such that

$$l^{T}x_{1} = 0$$
$$l^{T}x_{2} = 0$$
$$l = x_{1} \times x_{2}$$

Transformation of Points and Lines

For a point transformation

$$x' = Hx$$

• Transformation for lines $l' = H^{-T}l$

Ideal Points

Intersections of parallel lines?

$$l_1 \times l_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c' \end{pmatrix} = (c' - c) \begin{pmatrix} b \\ -a \\ 0 \end{pmatrix}$$
$$l_2 = (a, b, c')$$

• Parallel lines intersect in *Ideal Points* $(x_1, x_2, 0)^T$

Ideal Points

• Ideal points correspond to *directions*

$$(a, b)$$
 $(b, -a)$

Ideal point
$$\begin{pmatrix} b \\ -a \\ 0 \end{pmatrix}$$

Unaffected by translation

$$\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} r_{11}x + r_{12}y \\ r_{21}x + r_{22}y \\ 0 \end{pmatrix}$$

The Line at Infinity

• Line through two ideal points?

$$\binom{x}{y} \times \binom{x'}{y} = \binom{0}{xy' - x'y} = \binom{0}{0} = l_{\infty}$$

• Line at infinity $1_{\infty} = (0,0,1)^{T}$ intersects all ideal points

$$l_{\infty}^{T} x = l_{\infty}^{T} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 = 0$$

 $\mathbb{P}^2 = \mathbb{R}^2 \cup l_{\infty}$

Note that in \mathbb{P}^2 there is no distinction between ideal points and others

The Line at Infinity

The line at infinity $I_{\infty} = (0,0,1)^{T}$ is a fixed line under a projective transformation H if and only if H is an affinity (affine transformation)

$$\mathbf{l}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix} = \mathbf{l}_{\infty}$$

Note: not fixed pointwise

Affine trans. $H_A = \begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$

Conics

• Curve described by 2nd-degree equation in the plane

Conics

• Curve described by 2nd-degree equation in the plane

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

or homogenized $x \mapsto \frac{x_1}{x_3}, y \mapsto \frac{x_2}{x_3}$ $ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$

or in matrix form $x^T C x = 0$

$$(x_1 x_2 x_3) \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

• 5DOF (degrees of freedom): $\{a:b:c:d:e:f\}$ (defined up to scale)

Five Points Define a Conic

For each point the conic passes through

$$ax_i^2 + bx_iy_i + cy_i^2 + dx_i + ey_i + f = 0$$

or

$$(x_i^2, x_i y_i, y_i^2, x_i, y_i, 1)$$
c = 0 **c** = $(a, b, c, d, e, f)^{\mathsf{T}}$

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = \mathbf{0}$$

Tangent Lines to Conics

The line I tangent to C at point x on C is given by I=Cx

Dual Conics

- A line tangent to the conic C satisfies $\mathbf{1}^{\mathsf{T}} \mathbf{C}^* \mathbf{1} = 0$
- In general (C full rank): $\mathbf{C}^* = \mathbf{C}^{-1}$
- Dual conics = line conics = conic envelopes

Degenerate Conics

• A conic is degenerate if matrix C is not of full rank

e.g. repeated line (rank 1)

Degenerate line conics: 2 points (rank 2), double point (rank1)

• Note that for degenerate conics
$$(\mathbf{C}^*)^* \neq \mathbf{C}$$

Transformation of Points, Lines and Conics

For a point transformation

x' = Hx

Transformation for lines

 $l' = H^{-T}l$

Transformation for conics

 $C' = H^{-T}CH^{-1}$

Transformation for dual conics

$$C^{*\prime} = HC^*H^T$$

Application: Removing Perspective

Two stages:

- From perspective to affine transformation via the line at infinitiy
- From affine to similarity transformation via the circular points

Affine Rectification

Metric Rectification

 Need to measure a quantity that is not invariant under affine transformations

The Circular Points

$$\mathbf{I} = \begin{pmatrix} 1\\i\\0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1\\-i\\0 \end{pmatrix}$$

The circular points I, J are fixed points under the projective transformation **H** iff **H** is a similarity

$$\mathbf{I}' = \mathbf{H}_{s} \mathbf{I} = \begin{bmatrix} s \cos \theta & s \sin \theta & t_{x} \\ -s \sin \theta & s \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = se^{i\theta} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = \mathbf{I}$$

The Circular Points

• every circle intersects I_{∞} at the "circular points"

• Algebraically, encodes <u>orthogonal</u> directions $I = (1,0,0)^{T} + i(0,1,0)^{T}$

Conic Dual to the Circular Points

$$\mathbf{C}_{\infty}^{*} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad \mathbf{C}_{\infty}^{*} = \mathbf{I}\mathbf{J}^{\mathsf{T}} + \mathbf{J}\mathbf{I}^{\mathsf{T}}$$
$$\mathbf{C}_{\infty}^{*} = \mathbf{H}_{S}\mathbf{C}_{\infty}^{*}\mathbf{H}_{S}^{\mathsf{T}}$$

The dual conic \mathbf{C}^*_{∞} is fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Measuring Angles via the Dual Conic

• Euclidean:
$$1 = (l_1, l_2, l_3)^{\mathsf{T}} \qquad \mathbf{m} = (m_1, m_2, m_3)^{\mathsf{T}}$$

 $\cos Q = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}$
• Projective: $\cos Q = \frac{l^{\mathsf{T}} \mathbf{C}_{\neq}^* \mathbf{m}}{\sqrt{(l^{\mathsf{T}} \mathbf{C}_{\neq}^* \mathbf{l})(\mathbf{m}^{\mathsf{T}} \mathbf{C}_{\neq}^* \mathbf{m})}}$
 $1^{\mathsf{T}} \mathbf{C}_{\neq}^* \mathbf{m} = 0$ (orthogonal)

 Knowing the dual conic on the projective plane, we can measure Euclidean angles!

Metric Rectification

• Dual conic under affinity $\mathbf{C}_{\infty}^{*'} = \begin{pmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{I} & 0 \\ 0^{T} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{A}^{T} & 0 \\ \mathbf{t}^{T} & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A}\mathbf{A}^{T} & 0 \\ 0^{T} & 0 \end{pmatrix}$

• S=AA^T symmetric, estimate from two pairs of orthogonal lines (due to $1^T \mathbf{C}^*_{\neq} \mathbf{m} = 0$) $\left(l_1' m_1', l_1' m_2' + l_2' m_1', l_2' m_2' \right) \mathbf{s} = 0$

Note: Result defined up to similarity

Update to Euclidean Space

- Metric space: Measure ratios of distances
- Euclidean space: Measure absolute distances
- Can we update metric to Euclidean space?
- Not without additional information

Important Points so far ...

- Definition of 2D points and lines
- Definition of homogeneous coordinates
- Definition of projective space
- Effect of transformations on points, lines, conics
- Next: Analogous concepts in 3D

2D Projective Geometry

3D Projective Geometry

Camera Models & Calibration

3D Points and Planes

- 2D: duality point line, 3D: duality point plane
- Homogeneous representation of 3D points and planes $\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0$
- The point x lies on the plane π if and only if $\pi^\mathsf{T} X = 0$
- The plane π goes through the point x if and only if $\pi^{\mathsf{T}} X = 0$

Planes from Points

Solve π from $X_1^T \pi = 0$, $X_2^T \pi = 0$ and $X_3^T \pi = 0$ $\begin{bmatrix} X_1^T \\ X_2^T \\ X_3^T \end{bmatrix} \pi = 0 \quad \text{(solve } \pi \text{ as right nullspace of } \begin{bmatrix} X_1^T \\ X_2^T \\ X_3^T \end{bmatrix} \text{)}$

Points from Planes

Solve X from $\pi_1^T X = 0$, $\pi_2^T X = 0$ and $\pi_3^T X = 0$

 $\begin{bmatrix} \pi_1^{\mathsf{T}} \\ \pi_2^{\mathsf{T}} \\ \pi_3^{\mathsf{T}} \end{bmatrix} \mathbf{X} = \mathbf{0} \quad \text{(solve Xas right nullspace of } \begin{bmatrix} \pi_1^{\mathsf{T}} \\ \pi_2^{\mathsf{T}} \\ \pi_3^{\mathsf{T}} \end{bmatrix} \text{)}$

Representing a plane by its span

$$\mathbf{X} = \mathbf{M} \mathbf{X} \quad \mathbf{M} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 \end{bmatrix} \in \mathbb{R}^{4 \times 3}$$
$$\pi^{\mathsf{T}} \mathbf{M} = \mathbf{0}$$

Quadrics and Dual Quadrics

 $\mathbf{X}^{\mathsf{T}}\mathbf{Q}\mathbf{X} = \mathbf{0}$ (Q: 4x4 symmetric matrix)

- 9 DOF (up to scale)
- In general, 9 points define quadric
- $det(\mathbf{Q})=0 \leftrightarrow degenerate quadric$
- tangent plane $P = \mathbf{Q}\mathbf{X}$
- Dual quadric: $\rho^{\mathsf{T}} \mathbf{Q}^* \rho = \mathbf{0}$ (\mathbf{Q}^* adjoint)
- relation to quadric $\mathbf{Q}^* = \mathbf{Q}^{-1}$ (non-degenerate)

Transformation of 3D points, planes and quadrics

- Transformation for points X' = HX
- (2D equivalent) $(x' = \mathbf{H}x)$
- Transformation for planes $\mathcal{D}' = \mathbf{H}^{-\mathsf{T}} \mathcal{D} \qquad (l' = \mathbf{H}^{-\mathsf{T}} l)$
- Transformation for quadrics $\mathbf{Q'} = \mathbf{H}^{-T}\mathbf{Q}\mathbf{H}^{-1} \qquad \left(\mathbf{C'} = \mathbf{H}^{-T}\mathbf{C}\mathbf{H}^{-1}\right)$
- Transformation for dual quadrics $\mathbf{Q}^{\mathbf{r}^*} = \mathbf{H}\mathbf{Q}^*\mathbf{H}^{\mathsf{T}}$ $(\mathbf{C}^{\mathbf{r}^*} = \mathbf{H}\mathbf{C}^*\mathbf{H}^{\mathsf{T}})$

The Plane at Infinity

The plane at infinity $\pi_{\infty} = (0, 0, 0, 1)^{T}$ is a fixed plane under a projective transformation H iff H is an affinity

$$\boldsymbol{\pi}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \boldsymbol{\pi}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \boldsymbol{\pi}_{\infty}$$

- 1.
- canonical position $\mathcal{P}_{\downarrow} = (0,0,0,1)^{\mathsf{T}}$ contains all directions $\mathbf{D} = (X_1, X_2, X_3, 0)^{\mathsf{T}}$ 2.
- 3. two planes are parallel \Leftrightarrow line of intersection in π_{∞}
- line || line (or plane) \Leftrightarrow point of intersection in π_{∞} 4.
- 2D equivalent: line at infinity 5.

Hierarchy of 3D Transformations

Hierarchy of 3D Transformations

The Absolute Conic

• The absolute conic Ω_{∞} is a (point) conic on π_{∞} • In a metric frame: $X_1^2 + X_2^2 + X_3^2$ $X_4 = 0$

or conic for directions: ((with no real points)

$$X_1, X_2, X_3$$
 I (X_1, X_2, X_3)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

- 1. Ω_{∞} is only fixed as a set
- 2. Circles intersect Ω_{∞} in two circular points
- 3. Spheres intersect $\pi_{\scriptscriptstyle \! \infty}$ in $\Omega_{\scriptscriptstyle \! \infty}$

The Absolute Dual Quadric

The absolute dual quadric Ω^*_{∞} is a fixed quadric under the projective transformation **H** iff **H** is a similarity

- 1. 8 dof
- 2. plane at infinity π_{∞} is the nullvector of Ω_{∞}
- 3. angles: $\cos\theta = \frac{\pi_1^{\mathsf{T}}\Omega_{\infty}^*\pi_2}{\sqrt{(\pi_1^{\mathsf{T}}\Omega_{\infty}^*\pi_1)(\pi_2^{\mathsf{T}}\Omega_{\infty}^*\pi_2)}}$

Important Points so far ...

- Def. of 2D points and lines, 3D points and planes
- Def. of homogeneous coordinates
- Def. of projective space (2D and 3D)
- Effect of transformations on points, lines, planes
- Next: Projections from 3D to 2D

2D Projective Geometry

• 3D Projective Geometry

Camera Models & Calibration

Camera Model

Relation between pixels and rays in space

illum in tabula per radios Solis, quâm in cœlo contingit: hoc eft,fi in cœlo fuperior pars deliquiũ patiatur,in radiis apparebit inferior deficere,vt ratio exigit optica.

Sic nos exacté Anno . 1544 . Louanii eclipfim Solis obferuauimus, inuenimusq; deficere paulò plus g dex-

Projection as matrix multiplication:

$$\begin{pmatrix} x'\\y'\\z' \end{pmatrix} = \begin{pmatrix} f & 0 & 0\\0 & f & 0\\0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X\\Y\\Z \end{pmatrix} = \begin{pmatrix} fX\\fY\\Z \end{pmatrix} = \begin{pmatrix} fX/Z\\fY/Z\\1 \end{pmatrix}$$

De-homogenization:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x'/z' \\ y'/z' \end{pmatrix}$$

Projection as matrix multiplication:

 $\begin{pmatrix} x'\\y'\\z' \end{pmatrix} = \begin{pmatrix} f & 0 & p_x\\0 & f & p_y\\0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X\\Y\\Z \end{pmatrix}$

Slides from Olof Enqvist & Torsten Sattler

Intrinsic Camera Parameters

General intrinsic camera calibration matrix:

$$\mathbf{K} = \begin{pmatrix} f & s & p_x \\ 0 & \alpha f & p_y \\ 0 & 0 & 1 \end{pmatrix}$$

In practice:

$$\mathbf{K} = \begin{pmatrix} f & 0 & w/2 \\ 0 & f & h/2 \\ 0 & 0 & 1 \end{pmatrix}$$

Extrinsic Camera Parameters

Transformation from global to camera coordinates:

$$\mathbf{X}_{ ext{cam}} ~=~ \mathtt{R}\left(\mathbf{X}_{ ext{global}} - ilde{\mathbf{C}}
ight)$$

Projection Matrix

Projection from 3D global coordinates to pixels:

$$\lambda \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{K} (\mathbf{R} \mathbf{X}_{\text{global}} + \mathbf{t})$$

3x4 matrix (maps from \mathbb{P}^3 to \mathbb{P}^2)

projection matrix

Practical Camera Calibration

Method and Pictures from Zhang (ICCV' 99): "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations"

Unknown: constant camera intrinsics K (varying) camera poses R,t Known: 3D coordinates of chessboard corners => Define to be the z=0 plane ($X=[X_1 X_2 0 1]^T$)

Point is mapped as $\lambda \mathbf{x} = \mathbf{K} (\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{t}) \mathbf{X}$ $\lambda \mathbf{x} \in \mathbf{K} (\mathbf{r}_1 \mathbf{r}_2 \mathbf{t}) \mathbf{X}_1 \mathbf{X}_2 \mathbf{1} \mathbf{I}$ $\mathbf{K} = \begin{bmatrix} f_x & p_x \\ f_y & p_y \\ 1 \end{bmatrix}$

Homography H between image and chess coordinates, estimate from known \boldsymbol{X}_i and measured \boldsymbol{x}_i

- Equations are linear in \mathbf{h} : $\mathbf{A}_{i}\mathbf{h} = 0$
- Only 2 out of 3 are linearly independent (2 equations per point)

Solving for homography H $\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_3 \end{bmatrix}$ size A is 8x9 (2eq.) or 12x9 (3eq.), but rank 8

- Trivial solution is $h=0_9^T$ is not interesting
- 1D null-space yields solution of interest pick for example the one with $\|\mathbf{h}\| = 1$

Over-determined solution

$$\mathbf{A}_{1}$$
$$\mathbf{A}_{2}$$
$$\mathbf{A}\mathbf{h} = \mathbf{0}$$

• No exact solution because of inexact measurement, i.e., "noise"

- Find approximate solution
- Additional constraint needed to avoid **0**, e.g., $\|\mathbf{h}\| = 1$
- $\mathbf{A}\mathbf{h} = \mathbf{0}$ not possible, so minimize $\|\mathbf{A}\mathbf{h}\|$

DLT Algorithm

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix **H** such that $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$

<u>Algorithm</u>

- (i) For each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ compute \mathbf{A}_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices A_i into a single 2nx9 matrix A
- (iii) Obtain SVD of A. Solution for h is last column of V
- (iv) Determine **H** from **h**

Importance of Normalization

$$\begin{bmatrix} 0 & 0 & 0 & -x_i & -y_i & -1 & y_i'x_i & y_i'y_i & y_i' \\ x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = \mathbf{0}$$

-10² ~10² 1 ~10² ~10² 1 ~10⁴ ~10⁴ ~10²

1 -1

orders of magnitude difference!

Normalized DLT Algorithm

<u>Objective</u>

Given $n \ge 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix **H** such that $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$

<u>Algorithm</u>

(i) Normalize points $\tilde{\mathbf{X}}_{i} = \mathbf{T}_{norm} \mathbf{X}_{i}, \tilde{\mathbf{X}}_{i}' = \mathbf{T}_{norm}' \mathbf{X}_{i}'$ (ii) Apply DLT algorithm to $\tilde{\mathbf{X}} \longleftrightarrow \tilde{\mathbf{Y}}'$

(ii) Apply DLT algorithm to $\tilde{\mathbf{X}}_i \Leftrightarrow \tilde{\mathbf{X}}'_i$,

(iii) Denormalize solution $\mathbf{H} = \mathbf{T}_{norm}^{\prime-1} \widetilde{\mathbf{H}} \mathbf{T}_{norm}$

Normalization (independently per image):

- Translate points such that centroid is at origin
- Isotropic scaling such that mean distance to origin is $\sqrt{2}$

Geometric Distance

- X measured coordinates
- $\hat{\mathbf{x}}$ estimated coordinates
- $\overline{\mathbf{x}}$ true coordinates
- d(.,.) Euclidean distance (in image)

Error in one image

 $\hat{\mathbf{H}} = \underset{\mathbf{H}}{\operatorname{argmin}} \sum d(\mathbf{x}'_i, \mathbf{H}\overline{\mathbf{x}}_i)^2$ e.g. calibration pattern

Symmetric transfer error

$$\hat{\mathbf{H}} = \underset{\mathbf{H}}{\operatorname{argmin}} \sum_{i} d(\mathbf{x}_{i}, \mathbf{H}^{-1}\mathbf{x}_{i}')^{2} + d(\mathbf{x}_{i}', \mathbf{H}\mathbf{x}_{i})^{2}$$

Reprojection error

$$(\hat{\mathbf{H}}, \hat{\mathbf{x}}_{i}, \hat{\mathbf{x}}_{i}') = \underset{\hat{\mathbf{H}}, \hat{\mathbf{x}}_{i}, \hat{\mathbf{x}}_{i}'}{\operatorname{argmin}} \sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2}$$
subject to $\hat{\mathbf{x}}_{i} = \hat{\mathbf{H}}\hat{\mathbf{x}}_{i}'$

Reprojection Error

$$d(\mathbf{x},\mathbf{H}^{-1}\mathbf{x}')^2 + d(\mathbf{x}',\mathbf{H}\mathbf{x})^2$$

 $d(\mathbf{x}, \hat{\mathbf{x}})^2 + d(\mathbf{x}', \hat{\mathbf{x}}')^2$

Statistical Cost Function and Maximum Likelihood Estimation

- Optimal cost function related to noise model
- Assume zero-mean isotropic Gaussian noise (assume outliers removed)

$$\Pr(\mathbf{x}) = \frac{1}{2\pi\sigma^2} e^{-d(\mathbf{x},\overline{\mathbf{x}})^2/(2\sigma^2)}$$

Error in one image

$$\Pr\left(\left\{\mathbf{x}'_{\mathbf{i}}\right\} \mid \mathbf{H}\right) = \prod_{i} \frac{1}{2\pi\sigma^{2}} e^{-d\left(\mathbf{x}'_{\mathbf{i}}, \mathbf{H}\overline{\mathbf{x}}_{i}\right)^{2} / (2\sigma^{2})}$$

 $\log \Pr(\{\mathbf{x}'_{\mathbf{i}}\} | \mathbf{H}) = -\frac{1}{2\sigma^2} \sum_{i} d(\mathbf{x}'_{\mathbf{i}}, \mathbf{H}\overline{\mathbf{x}}_{\mathbf{i}})^2 + const$ Maximum Likelihood Estimate: $\min \sum_{i} d(\mathbf{x}'_{\mathbf{i}}, \mathbf{H}\overline{\mathbf{x}}_{i})^2$

Gold Standard Algorithm

<u>Objective</u>

Given n≥4 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the Maximum Likelihood Estimation of **H**

(this also implies computing optimal $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$)

<u>Algorithm</u>

- (i) Initialization: compute an initial estimate using normalized DLT or RANSAC
- (ii) Geometric minimization of symmetric transfer error:
 - Minimize using Levenberg-Marquardt over 9 entries of h or reprojection error:
 - compute initial estimate for optimal {x_i}
 - minimize cost $\sum d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}'_i, \hat{\mathbf{x}}'_i)^2$ over $\{\mathbf{H}, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$
 - if many points, use sparse method

Radial Distortion

straight lines are not straight anymore

- Due to spherical lenses (cheap)
- (One possible) model:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \mathbb{R} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}^\top & -\mathbf{R}^\top \mathbf{t} \\ 0_3^\top & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \end{bmatrix}$$
$$\mathbf{R}: \quad (x, y) = (1 + K_1(x^2 + y^2) + K_2(x^2 + y^2)^2 + \dots) \begin{bmatrix} x \\ y \end{bmatrix}$$

Calibration with Radial Distortion

- Low radial distortion:
 - Ignore radial distortion during initial calibration
 - Estimate distortion parameters, refine full calibration

• High radial distortion: Simultaneous estimation

- Fitzgibbon, "Simultaneous linear estimation of multiple view geometry and lens distortion", CVPR 2001
- Kukelova et al., "Real-Time Solution to the Absolute Pose Problem with Unknown Radial Distortion and Focal Length", ICCV 2013
- Larsson et al., "Revisiting Radial Distortion Absolute Pose", ICCV 2019

Bouguet Toolbox

Camera Calibration Toolbox for Matlab

http://www.vision.caltech.edu/bouguetj/calib_doc/

Rolling Shutter Cameras

- Image build row by row
- Distortions based on depth and speed
- Many mobile phone cameras have rolling shutter

Video credit: Olivier Saurer

Rolling Shutter Effect

Global shutter Rolling shutter

Event Cameras

Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers

Elias Mueggler, Basil Huber and Davide Scaramuzza

Schedule

Feb 22	Introduction
Mar 1	Geometry, Camera Model, Calibration
Mar 8	Features, Tracking / Matching
Mar 15	Project Proposals by Students
Mar 22	Structure from Motion (SfM) + papers
Mar 29	Dense Correspondence (stereo / optical flow) + papers
Apr 5	Easter break
Apr 12	Bundle Adjustment & SLAM + papers
Apr 19	Student Midterm Presentations
Apr 26	Multi-View Stereo & Volumetric Modeling + papers
May 3	3D Modeling with Depth Sensors + papers
May 10	Guest lecture + papers
May 17	Guest lecture + papers
May 31	Student Project Demo Day = Final Presentations

Reminder

- Project presentation in 2 weeks
- Form team & decide project topic
 - By March 8nd
- Talk with supervisor, submit proposal
 - By March 15th

Next class: Features, Tracking / Matching

