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Schedule

Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration
Mar 4 Guest lecture + Features, Tracking / Matching
Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers
Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers
May 6 3D Modeling with Depth Sensors + papers
May 13 Guest lecture + papers

May 20 Holiday




3D Vision— Class 2

Projective Geometry and
Camera Model

points, lines, planes, conics and quadrics
Transformations, camera model

Chapters 1, 2 and 5 in Hartley and Zisserman 1st edition
Or Chapters 2, 3 and 6 in 2" edition
See also Chapter 2 in Szeliski book

ETH



Topics Today

Lecture intended as a review of material covered
in Computer Vision lecture

Probably the hardest lecture (since very theoretic)
in the class ...

... but fundamental for any type of 3D Vision
application

Key takeaways:

o 2D primitives (points, lines, conics) and their
transformations

» 3D primitives and their transformations
e Camera model and camera calibration



Overview

» 2D Projective Geometry
» 3D Projective Geometry

e Camera Models & Calibration




2D Projective Geometry?

Projections of planar surfaces

UE M TLE ULk

A. Criminisi. Accurate Visual Metrology from Single and
Multiple Uncalibrated Images. PhD Thesis 1999. m




2D Projective Geometry?

Measure distances

1.3 Cm

A. Criminisi. Accurate Visual Metrology from Single and

Multiple Uncalibrated Images. PhD Thesis 1999. m



Piero della Francesca, La Flagellazione di Cristo (1460)

A. Criminisi. Accurate Visual Metrology from Single and
Multiple Uncalibrated Images. PhD Thesis 1999.




2D Projective Geometry?

Image Stitching




2D Projective Geometry?

Image Stitching

iTH



2D Euclidean Transformations

e Rotation (around origin) A )
(x’) _ [cos a —sin a] (X) <x> <” )

y' sina  cosa J\Y Y
» Translation <>’>

()= G+ ()

o “Extended coordinates”

x'! cosa —sina t,
7 —_ :
y'|=[sina cosa ¢,

0 0 1

()




Homogeneous Coordinates

Homogenous coordinates ( )

0)=g) =0

Equivalence class of vectors / S—1
3 6 -9
(2)-(3)=(s) =
1 2 -3 X

2D projective space: PZ = R3\ {(0,0,0)}
ETH




(Homogeneous) representation of 2D line:
ax+by+c=0 (a,b,c)T(x,y,l) =0

The point x lies on the line I if and only if I'x =0

Note that scale is unimportant for incidence relation
(abc) ~k(abc) k20 (xy) ~k(xy1)', k20

T
Homogeneous coordinates ()(1,X2,X3) but only 2DOF
Inhomogeneous coordinates (X, y)T = ()(1/)(3, X2/X3)T



2D Projective Transformations

Definition:

A projectivity is an invertible mapping h from P? to itself
such that three points Xy, X,, X5 lie on the same line if
and only if h(x,), h(x,), h(X;) do.

Theorem:

A mapping h : P? - P? is a projectivity if and only if
there exist a non-singular 3x3 matrix H such that for any

point in P2 represented by a vector X it is true that
h(x)=Hx

Definition: Projective transformation
| (
X 1 hll h12 h13 Xl

Xlz — h21 h22 h23 X, or X=HX s8sboF
X's) Lhy hgy hy KX,)

projectivity = collineation = proj. transformation = homographyl=TIH




Hierarchy of 2D Transformations

transformed

~ _ squares Invariants
h11 h12 hl3 Concurrency, collinearity,
Projective | K h order of contact (intersection,
8dof 21 22 tangency, inflection, etc.),
h Ccross ratio
31 32
B Parallelism, ratio of areas,

_ d; ap ratio of lengths on parallel
Affine a a lines (e.g. midpoints), linear
6dof 21 22 combinations of vectors

0 0 (centroids),
— The line at infinity |,
SI. Sr
. 11 12 Ratios of lengths, angles,
Similarity Sr ST The circular points I,J
4dof 21 2z
0 0
_ SR
Euclidean r r Absolute lengths, angles,
3dof 21 22 areas
0 0 ETH







Lines to Points, Points to Lines

ly
* Intersections of lines >(

lT —

. 1X =

Find x such that { T x =1l X1
lzx —

* Line through two points I

lTx1 — O

T — 0 [ =x1 Xx,
, =

Find | such that {




H
* For a point transformation —1 f
x' = Hx
* Transformation for lines HT
I = HTl | P

'x=0m T(H1M)x=0==) (H")'Hx =0
)
[’ x'

ETH



Ideal Points

* Intersections of parallel lines?

a a
L XL, = (b)x(b)
C ol

ly = (a,b,c)

l, =(a,b,c")

- Parallel lines intersect in Ideal Points (x,, X,,0)"



Ideal Points

- Ideal points correspond to directions

b
/ Ly = (a,b,c) Ideal point (—a)
(a,b) :
/n (b, —a)

- Unaffected by translation

1 T2 O] /X 11X +712Y
1 T2 Uy ()’)= 721X + T2y

0 0 1170 0




The Line at Infinity

* Line through two ideal points?

0))-(,0.)-(0)-

- Line at infinity I, =(0,0,1)" intersects all ideal points
X1

l£x=lg X2 =x3=0
X3

Note that in P2 there is no distinction

2 _ 2
P* =R U l°° between ideal points and others E’H




The Line at Infinity

The line at infinity 1 _=(0,0,1)" is a fixed line under a
projective transformation H if and only if H is an
affinity (affine transformation)

r —T .
! =H, | =

(0 0]

A—T

Note: not fixed pointwise

0

—t'ATT 1

(0)
0|=1
1)
Affine trans.
A t
HA_[OT 1

ETH




Conics

- Curve described by 2nd-degree equation in the plane

2 6

Parabola Ellipse Hyperbola
Circle ETH

Image source: Wikipedia



Conics

- Curve described by 2nd-degree equation in the plane

ax?+bxy+cy*+dx+ey+f=0

or homogenized x+— ’%3 Y ’%3

ax? + bxi1x, + cxs + dx;x3 + ex,x3 + fx5 =0
or in matrix form x"Cx =0
- a b/2 d/2]| /x
(xyx5x3)|b/2 ¢ ef2 (xz) =0
d/2 ef2 f | \X3
* 5DOF (degrees of freedom): {a: b:c:d:e: f} (defined up t(ﬁqﬁ




Five Points Define a Conic

For each point the conic passes through
ax; +bxy, +cy; +dx +ey; +f =0
or
2 2 T
(Xi'xiyi’yi'xi’yi’l):zo C:(a,b;C,d,e;f)

stacking constraints yields

g XY, Yr % oy 1
X; XY, Y; X ¥, 1
X§ X3Y3 Y32, X; y; 1€£=0
Xp X¥s Ya X, Y, 1
2 2 1

X5 X5Ys Y5 X5 Y5 L




Tangent Lines to Conics

The line | tangent to C at point X on C is given by I=Cx




=0

-1

conic envelopes

Dual Conics

>

- A line tangent to the conic C satisfies |T C” |
In general (C full rank): C

* Dual conics = line conics




Degenerate Conics

* A conic is degenerate if matrix C is not of full rank

m

e.g. two lines (rank 2) ><|

C=Im"+ml'

e.g. repeated line (rank 1)

c=II" T

* Degenerate line conics: 2 points (rank 2), double point (rankl)

* Note that for degenerate conics (C*) #C

ETH




Transformation of Points, Lines
and Conics

* For a point transformation
x" = Hx
* Transformation for lines
I =HTI
* Transformation for conics
C'=HTCH™?
* Transformation for dual conics

C*' = HC*HT




%r.
\\T/}* 43

\?

Two stages:
* From perspective to affine transformation via the line at infinitiy
* From affine to similarity transformation via the circular points

ETH




Affine Rectification

projection affine metric
rectification rectification

e iGN (L) /0
I, | = | %211 322,70y, L |= (0)
s Ly 0 0q/1 I3 1

ETH




Affine Rectification

Ioozlevz IOO




* Need to measure a quantity that is not invariant
under affine transformations




The Circular Points

1) (1
I=|i| JT=|-i
0) L0

The circular points I, J are fixed points under the
projective transformation H iff H is a similarity

[ scosd ssing t |1 1
I"'=HgI=|—ssin@ scosd t | i|=se’|i]|=I
0 0 10 0




The Circular Points

- every circle intersects |, at the “circular points”
I

o0

X HX, X texX + fx; =0 X2+ x5 =0
X, =0
’ 1 =(1i,0)'
J=(1-i,0)"

* Algebraically, encodes orthogonal directions

| =(1,0,0)' +i(0,1,0)'

ETH



C.=1"+JI"

C’ —H.C"H!

The dual conic C_ is fixed conic under the
projective transformation H iff H is a similarity




Measuring Angles via the Dual Conic

- Euclidean: | = (Il,lz, IS)TI m |: (ml,mz,ms)T
m +1,m,
COSq = -
\/(Il2 ¥ IZZ)(le ¥ mg) 10 0
S 31
I'C,m

* Projective: cosqg = \/(IT C; |)(mT C; m)

I'C,m=0 (orthogonal)

- Knowing the dual conic on the projective
plane, we can measure Euclidean angles! ETH




 Dual conic under affinity

o (A tj(l OjAT 0] [AAT 0
= 0" 2A0" oAt"™ 1) Lo" O
* S=AAT symmetric, estimate from two pairs of

orthogonal lines (due to |" C, m = 0)

! !/ / ! ! ! ! !
(l1 m,,Lm, +1,m ,l,m, )S =0

Note: Result defined up to similarity ETH



Update to Euclidean Space

» Metric space: Measure ratios of distances

* Euclidean space: Measure absolute distances
- Can we update metric to Euclidean space?

* Not without additional information




Important Points so far ...

* Definition of 2D points and lines

* Definition of homogeneous coordinates

» Definition of projective space

* Effect of transformations on points, lines, conics
* Next: Analogous concepts in 3D




Overview

» 2D Projective Geometry
» 3D Projective Geometry

e Camera Models & Calibration




3D Points and Planes

» 2D: duality point - line, 3D: duality point - plane

* Homogeneous representation of 3D points and planes
X, +m, X, +n, X+, X, =0

* The point X lies on the plane Tt if and only if
1'X=0

* The plane Tt goes through the point X if and only if
n'X=0




Planes from Points

Solve tfrom X/t =0, Xt =0and Xt =0

n=0 (solve T as right nullspace of




Points from Planes

Solve X froma, X =0,n, X =0andr,; X =0

o o
ﬂ;; X =0 (solve Xas right nullspace of n; )
T T

Representing a plane by its span

X=Mx M=[X X, X;]eR*®




Quadrics and Dual Quadrics

X'QX =0 (Q:4x4 symmetric matrix)

9 DOF (up to scale)

* In general, 9 points define quadric

- det(Q)=0 < degenerate quadric

- tangent plane p =QX

- Dual quadric: p' Q' p=0 (Q’ adjoint)
*  relation to quadric Q* = Q'l (non-degenerate)

fo) [ ] L] ]
o le) [ ] [ ]

Image source: Wikipedia



Transformation of 3D points,
planes and quadrics

 Transformation for points (2D equivalent)
X=HX (X'=Hx)
 Transformation for planes
o=HT"p (I': H'TI)

 Transformation for quadrics

Q'=HTQH" (C=HTCHY)

» Transformation for dual quadrics

Q" =HQH" (c"=HCHT)




The Plane at Infinity

The plane at infinity m_=(0, 0, 0, 1) is a fixed plane
under a projective transformation H iff H is an
affinity

AT 0]/ 0
“tTATT 1

-T
n:o:HA 7-':oo:|:

canonical position p,, = (0,0,0,1)T

contains all directions D = (Xl, X,, XS,O)

two planes are parallel < line of intersection in 17,

line || line (or plane) < point of intersection in T,

2D equivalent: line at infinity ETH

gk




Hierarchy of 3D Transformations

Euclidean R t v
olume
6d0f OT 1




projective

Plane at infinity

Absolute conic

N

similarity




The Absolute Conic

* The absolute conic Q,, is a (point) conic on T_
- In a metric frame: Xlz + X22 + X?}

X,

or conic for directions: ()(1, X,, X3)I (Xl, X,, Xs)T

(with no real points)

The absolute conic Q. is a fixed conic under the
projective transformation H iff H is a similarity

1. Q. isonly fixed as a set
2. Circles intersect Q_, in two circular points
3. Spheres intersect 1, in Q.




The absolute dual quadric Q" is a fixed quadric under
the projective transformation H iff H is a similarity

1. 8 dof
2. plane at infinity 1T, is the nullv*ector of Q.
3. angles: Q. ,

cosf =

Jmein @) ETH




Important Points so far ...

* Def. of 2D points and lines, 3D points and planes
* Def. of homogeneous coordinates

* Def. of projective space (2D and 3D)

- Effect of transformations on points, lines, planes
* Next: Projections from 3D to 2D




Overview

» 2D Projective Geometry

» 3D Projective Geometry

» Camera Models & Calibration




Camera Model

Relation between pixels and rays in space




Pinhole Camera

illum 1n rabula per radios Solis, quam in ceelo contin-
git:hoc eft,fi in ceelo fuperior pars deliquiil patiatur,in
radiis apparebitinferior deficere,vt ratio exigitoptica.

Wl nl ==

r~ —

AN

R ZAARRANN

Sic nos exaété Anno . 1544 . Louanii eclipfim Solis
obferuavimus, inuenimusg; deficere pauld plus § dex-




Pinhole Camera

ETH

Slides from Olof Enqvist & Torsten Sattler




Pinhole Camera

ETH

Slides from Olof Enqvist & Torsten Sattler




center

(0,

OI

P|nh0|e Ca mera

e d
e L
-.-.-.-.. e i o
.-.-.-.- - -
fI___________;_f_/.-_
o
2 ¢ g
» — \
fﬂff principal axis
- image plane
Ve

ETH

figure adapted from Hartley and Zisserman, 2004



A Pinhole Camera
(XY, Z2)T

Projection as matrix multiplication:

x’ f 0 0\ /X X [fX/Z
(7)- (2 9E) ()l
2! O 0 1 VA 7 1

De-homogenization: (:L‘) - (m’/z’)
Y y' /2




Pinhole Camera

Principal point

P = (Px Dy)
¢

Mapping to pixel coordinates: (ZL") . (ZE —I—IJJJ)

Y Y + Dy

Projection as matrix multiplication:

x’ f 0 pg X

y |=10 f py | |Y

2! 0 0 1 VA

ETH

Slides from Olof Enqvist & Torsten Sattler




Intrinsic Camera Parameters

General intrinsic camera calibration matrix:

f s D
K=|0 af p,
0 0 1

In practice:

f 0 w/2
K=1{0 f h/2
0 1




Extrinsic Camera Parameters

I‘l.i.'!ﬂ.ﬂ:l

Yeam

camera coordinates

R, t

0O —
/ Y

X global coordinates

Transformation from global to camera coordinates:

figure adapted from Hartley and Zisserman, 2004



Projection Matrix

Projection from 3D global coordinates to pixels:

= K (RXgloba.l + t)

P
— e &

3x4 matrix
(maps from P3 to P?)

ETH

figure adapted from Hartley and Zisserman, 2004

projection matrix




Practical Camera Calibration

Method and Pictures from Zhang (ICCV’ 99): “Flexible Camera Calibration By Viewing a
Plane From Unknown Orientations”

Unknown: constant camera intrinsics K
(varying) camera poses Rt
Known: 3D coordinates of chessboard corners
=> Define to be the z=0 plane (X=[X; X, 0 1]7)

Pointis mapped as Ax =K (r; r,ryt) X 'fx px-
K (a1 X, X, 1T K=| f »p
y y

Homography H between image and chess coordinates, estimate from
known X; and measured x;




Direct Linear Transformation (DLT)
/thX.\
X' xHx. =0  x,=(x.y.w) Hx =|hx

/y’.h3TXi — w;hszi\

l

1T T
x, xHx, =|wh' x, - xh’ x,

l

\x’.hZTXl. — y;thxi/

T T T 1/1l

0 WX, VX, h'

T T T w2z
WX, 0 -xx; [[h*|=0

T T T 3
—ViX; XX 0" [{h)




Direct Linear Transformation (DLT)

» Equations are linear in N: A h=0

* Only 2 out of 3 are linearly independent
(2 equations per point)

T T T 1
0. —wixp yixp ol
,OT —WiX, o VXt (il g 2
WXt (())T — XX h“[=0
w'X - XX
T T 3
VX XX, 0" "\l

“(only drop third row if w;” #0)
» Holds for any homogeneous
representation, e.g. (x.',y: ,1)




Direct Linear Transformation (DLT)

» Solving for homography H
A
A2
Ah=0

A3
size A is 8x9 (269& or 12x9 (3eq.), but rank 8
RS

- Trivial solution is h=0," is not interesting

+ 1D null-space yields solution of interest
pick for example the one with ||h| =1 ETH




Direct Linear Transformation (DLT)

e Qver-determined solution
_Al i

AZ
Ah=0

 No exact solution |pgcalise of inexact measurement,
= 11 = 7 — n -
i.e., “noise

» Find approximate solution
- Additional constraint needed to avoid 0, e.q., hH =1

- AN = Onot possible, so minimize HAhH ETH




DLT Algorithm

Obijective

Given n=4 2D to 2D point correspondences {x;—X; },
determine the 2D homography matrix H such that
X;" =HXx.

Algorithm

(i) For each correspondence x; «<»x,” compute A.. Usually
only two first rows needed.

(i)  Assemble N 2x9 matrices A, into a single 2Nx9 matrix A

(i) Obtain SVD of A. Solution for h is last column of V
(iv) Determine H from h




Importance of Normalization

(!
0 0 0 -x; -y, -1 yx, vy Y Wl o
x, y, 10 0 0 -xjx, -xjy, -x; h3 )
~102~102 1 ~102 ~102 1 ~10¢ ~10° ~102\ /
orders of magnitude difference!
- ik 'T—'_-;:"_"?E':Ti'ﬁfj-_‘:-:—_:_-_________ ] R
- + + T
+ 4+ oy T

Monte Carlo simulation
for identity computation based on 5 points
(not normalized < normalized) ETH




Normalized DLT Algorithm

Obijective

Given n=4 2D to 2D point correspondences {x;—X; },
determine the 2D homography matrix H such that

X;" =HXx.
Algorithm
() Normalize points X, =T _x. X}, =T

norm i’ norm 1

(i) Apply DLT algorlthm to X, <> X,
(i) Denormalize solution H = T’1 HT

norm norm

Normalization (independently per image):
* Translate points such that centroid is at origin
» Isotropic scaling such that mean distance to origin is \/7

ETH




Geometric Distance

X measured coordinates

)A( estimated coordinates :::: : : : :
X true coordinates el | ot
d(.,.) Euclidean distance (in image) ::: : : : : :
Error in one image ::::::::

ﬁ = argminz d(xfi,Hii)2 e.g. calibration pattern
H i

Symmetric transfer error

VoS

H-= argminz d(xi,H'lx’i)2 + d(x’i,Hxi)2
H i

Reprojection error
SN . ~\2 ~\2
(H, xi,x’i) = argmmz d(xi,xi) + d(x’i,x’l.)

H,X; X ;

subjectto X, =HX. ETH




Reprojection Error

image 1 image 2

image 1 image 2



Statistical Cost Function and
Maximum Likelihood Estimation

» Optimal cost function related to noise model

* Assume zero-mean isotropic Gaussian noise
(assume outliers removed)

Pr(x)= 1 o-d(xx)/(20?)

2
270

Error in one image

Pr({x;} 1H) =TI L -d(xi %) (207)

. 2
i 2m0O

log Pr({x’i} I H) = —ﬁzd(x’i HX.)’ + const
o

Maximum Likelihood Estimate:
mith(X’i,H)_(i)2 ETH




Gold Standard Algorithm

Obijective

Given n=4 2D to 2D point correspondences {X.<>x. },
determine the Maximum Likelihood Estimation of H

(this also implies computing optimal x;” =Hx;)
Algorithm

(1) Initialization: compute an initial estimate using
normalized DLT or RANSAC

(i) Geometric minimization of symmetric transfer error:
* Minimize using Levenberg-Marquardt over 9 entries of h
or reprojection error:

« compute initial estimate for optimal {x;}
° minimize cost Ed(xi,fg.)2 +d(x’i,§(;)20ver {H,X1,X5,....X,}
* iIf many points, use sparse method

ETH




» Due to spherical lenses (cheap)
» (One possible) model:

z f:c s Cp 1
[y]NIU fycy R [0
1 0O 0 1 0

Ri (X y) =@+ K (X* +y°) + K, (X +y%)° +)D}

o= O
o O
oo O

RT RTt
0g 1

Jﬁ

= Ny =
|%/I

ETH



Calibration with Radial Distortion

* Low radial distortion:
» Ignore radial distortion during initial calibration

 High radial distortion: Simultaneous estimation

» Fitzgibbon, “Simultaneous linear estimation of multiple view geometry and lens
distortion”, CVPR 2001

o Kukelova et al., “Real-Time Solution to the Absolute Pose Problem with
Unknown Radial Distortion and Focal Length”, ICCV 2013

* Larsson et al., “Revisiting Radial Distortion Absolute Pose”, ICCV 2019




http://www.Vision.caltech.edu/bouqguetij/calib doc/



http://www.vision.caltech.edu/bouguetj/calib_doc/

» Image build row by row
» Distortions based on depth and speed
» Many mobile phone cameras have rolling shutter

Video credit: Olivier Saurer E'H



Rolling Shutter Effect

Global shutter Rolling shutter

Slide credit:

Cenek Albl E'H




Event Cameras

Event-based, 6-DOF Pose Tracking
for High-Speed Maneuvers

Elias Mueggler, Basil Huber and Davide Scaramuzza

ROBOTICS &
PERCEPTION
GROUP

rpg.ifi.uzh.ch

i) University of

= Zurich™ rObDHCS*

Department of Informatics




Schedule

Feb 22 Introduction

Mar 1 Geometry, Camera Model, Calibration

Mar 8 Features, Tracking / Matching

Mar 15 Project Proposals by Students

Mar 22 Structure from Motion (SfM) + papers

Mar 29 Dense Correspondence (stereo / optical flow) + papers

Apr 5

Apr 12 Bundle Adjustment & SLAM + papers
Student Midterm Presentations

Apr 26 Multi-View Stereo & Volumetric Modeling + papers

May 3 3D Modeling with Depth Sensors + papers

May 10 Guest lecture + papers

May 17 Guest lecture + papers

May 31 Student Project Demo Day = Final Presentations

ETH




Reminder

 Project presentation in 2 weeks

* Form team & decide project topic
» By March 8nd

» Talk with supervisor, submit proposal
» By March 15th




Next class:
Features, Tracking / Matching

1024 x 768 video, Time: 28.243 msec, Features: [MAX 1000] (Tracked 343 of 344) (Added 0)




