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Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration 

Mar 4 Guest lecture + Features, Tracking / Matching

Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday

Schedule



Projective Geometry and 
Camera Model

points, lines, planes, conics and quadrics
Transformations, camera model

Chapters 1, 2 and 5 in Hartley and Zisserman 1st edition
Or Chapters 2, 3 and 6 in 2nd edition
See also Chapter 2 in Szeliski book

3D Vision– Class 2



Topics Today

• Lecture intended as a review of material covered 
in Computer Vision lecture

• Probably the hardest lecture (since very theoretic) 
in the class …

• … but fundamental for any type of 3D Vision 
application

• Key takeaways:

• 2D primitives (points, lines, conics) and their 
transformations

• 3D primitives and their transformations

• Camera model and camera calibration



Overview

• 2D Projective Geometry

• 3D Projective Geometry

• Camera Models & Calibration



2D Projective Geometry?

Projections of planar surfaces

A. Criminisi. Accurate Visual Metrology from Single and 

Multiple Uncalibrated Images. PhD Thesis 1999.



2D Projective Geometry?

Measure distances

A. Criminisi. Accurate Visual Metrology from Single and 

Multiple Uncalibrated Images. PhD Thesis 1999.

4.4 Application - A plane measuring device 74

a b

Figure 4.14: Different views, samecomputation points: (a) and (b) two images of Keble College,

Oxford. The computation points are the same, but the viewpoint distortion is more severe in (b).

This is reflected in the larger (3 std. dev.) uncertainties. The actual width of the upper windows is

. Note the computed parallel lines.

computed from the estimated , and when one of them is fixed the distance is computed and shown.

Computing imagesof parallel linesand measuring their distance. Given the image-to-world

homography and a line on the image the one parameter family of lines parallel to in the world

is defined.

In fact, given a line and a point in the image we can find the line through whose back-

projection is parallel to the back-projection of onto the world plane. This is simply

where is the vanishing point for that direction; is given by with the following

filter matrix:

Once a pair of lines is selected their world distance can be easily computed by applying (3.3).

Different views, different computation points

Figure 4.15 shows, again, two different views of a wall. Four different computation points

are used in the two images. All the measurements are taken between parallel lines and although the

angle between camera and wall plane is large, the parallel lines are correctly computed.

Note that the distance measurements are invariant to the choice of computation points, the

ground truth is always in the uncertainty range returned by the system (see caption). Notice also in

this case the computation of the parallel lines.



2D Projective Geometry?

Discovering details

A. Criminisi. Accurate Visual Metrology from Single and 

Multiple Uncalibrated Images. PhD Thesis 1999.

4.4 Application - A plane measuring device 69

a

b c

Figure 4.9: Rectification of a plane in a painting: (a) the painting La Flagellazione di Cristo

by Piero della Francesca (1460, Urbino, Galleria Nazionale delle Marche); (b) original image with

part of the floor highlighted; (c) rectified image of the highlighted area. Notice that the beautiful

geometrical tile pattern is repeated twice.

the bottom of the rectified one [64]. A second, identical pattern is visible (despite occlusions) on

the top of the rectified image.

The image-to-world homography has been computed from the assumption of square floor

pattern.

Warping planes between images

If the inter-image homography relating two images is known it is possible to warp one image

onto the other.

An example is shown in figure 4.10 where two pictures of the same wall have been taken from

two different viewpoints (the camera has undergone a translational and rotational movement). The
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onto the other.

An example is shown in figure 4.10 where two pictures of the same wall have been taken from

two different viewpoints (the camera has undergone a translational and rotational movement). The

Piero della Francesca, La Flagellazione di Cristo (1460)



2D Projective Geometry?

Image Stitching



2D Projective Geometry?

Image Stitching



2D Euclidean Transformations
• Rotation (around origin)

• Translation

• “Extended coordinates”
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Homogeneous Coordinates

Homogenous coordinates

x

y
z

z=1

2D projective space: ℙ2 = ℝ3 \ { 0,0,0 }

Equivalence class of vectors

3
−2
1

=
6
−4
2

= 
−9
6
−3



Homogeneous Coordinates

  

ax + by + c = 0   

  

a,b,c( )
T

x,y,1( ) = 0

  

  

a,b,c( )
T

~ k a,b,c( )
T
,"k ¹ 0

(Homogeneous) representation of 2D line:

  

  

x,y,1( )
T

~ k x,y,1( )
T
,"k ¹ 0

The point x lies on the line l if and only if

Homogeneous coordinates

Inhomogeneous coordinates
  

  

x,y( )
T

= x1 x3 , x2 x3( )
T

  

   

x1,x2,x3( )
T

but only 2DOF

Note that scale is unimportant for incidence relation

  

  

lTx = 0

   

l

   

c / a2 + b2



2D Projective Transformations

A projectivity is an invertible mapping h from ℙ2 to itself 

such that three points x1, x2, x3 lie on the same line if 

and only if h(x1), h(x2), h(x3) do.

Definition:

A mapping h : ℙ2 → ℙ2 is a projectivity if and only if 

there exist a non-singular 3x3 matrix H such that for any 

point in P2 represented by a vector x it is true that 

h(x)=Hx

Theorem:

Definition: Projective transformation

 

x'1

x'2

x'3

 

 

 
 
 

 

 

 
 
 

=

h11 h12 h13

h21 h22 h23

h31 h32 h33

 

 

 
 
 

 

 

 
 
 

x1

x2

x3

 

 

 
 
 

 

 

 
 
 

 

x' = H xor 8DOF

projectivity = collineation = proj. transformation = homography



Hierarchy of 2D Transformations
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

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

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
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
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

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
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4dof

Euclidean

3dof

Concurrency, collinearity, 

order of contact (intersection, 

tangency, inflection, etc.), 

cross ratio

Parallelism, ratio of areas, 

ratio of lengths on parallel 

lines (e.g. midpoints), linear 

combinations of vectors 

(centroids),

The line at infinity l∞

Ratios of lengths, angles,

The circular points I,J

Absolute lengths, angles, 

areas

invariants
transformed 

squares



Working with Homogeneous Coordinates

• “Homogenize”: 

• Apply H:

• De-homogenize:

Type equation
here.

H
𝑥
𝑦 𝑥′

𝑦′



Lines to Points, Points to Lines

• Intersections of lines

Find      such that 

• Line through two points

Find      such that 

𝑥 ൝
𝑙1
𝑇𝑥 = 0

𝑙2
𝑇𝑥 = 0

𝑥 = 𝑙1 × 𝑙2

𝑙 ൝
𝑙𝑇𝑥1 = 0

𝑙𝑇𝑥2 = 0
𝑙 = 𝑥1 × 𝑥2

𝑥

𝑙2
𝑙1

𝑥1
𝑙

𝑥2



Transformation of Points and Lines

• Transformation for lines

• For a point transformation

𝑙𝑇𝑥 = 0

𝑥′ = 𝐻𝑥

𝑙′ = 𝐻−𝑇𝑙

𝑙𝑇(𝐻−1𝐻)𝑥 = 0 (𝐻−𝑇𝑙)𝑇𝐻𝑥 = 0

𝑙′ 𝑥′

𝐻

𝐻−𝑇



Ideal Points

• Intersections of parallel lines? 

• Parallel lines intersect in Ideal Points
  

   

x1,x2,0( )
T

𝑙1 = (𝑎, 𝑏, 𝑐)

𝑙2 = (𝑎, 𝑏, 𝑐′)

𝑙1 × 𝑙2 =
𝑎
𝑏
𝑐

×
𝑎
𝑏
𝑐′

= (𝑐′ − 𝑐)
𝑏
−𝑎
0



Ideal Points

• Ideal points correspond to directions

• Unaffected by translation

𝑙1 = (𝑎, 𝑏, 𝑐)

(𝑎, 𝑏)

(𝑏, −𝑎)

Ideal point 
𝑏
−𝑎
0

𝑟11 𝑟12 𝑡𝑥
𝑟21 𝑟22 𝑡𝑦
0 0 1

𝑥
𝑦
0

=
𝑟11𝑥 + 𝑟12𝑦
𝑟21𝑥 + 𝑟22𝑦

0



The Line at Infinity

• Line through two ideal points?

• Line at infinity                    intersects all ideal points( )T
1,0,0l =

Note that in ℙ2 there is no distinction 

between ideal points and others

𝑥
𝑦
0

×
𝑥′
𝑦′
0

=
0
0

𝑥𝑦′ − 𝑥′𝑦
=

0
0
1

= 𝑙∞

𝑙∞
𝑇 𝑥 = 𝑙∞

𝑇

𝑥1
𝑥2
𝑥3

= 𝑥3 = 0

ℙ2 = ℝ2 ∪ 𝑙∞



The Line at Infinity

0
0

l l 0 l
t 1

1

A

−

−

  −

 
    = = =   −   

 

A
H

A

T
T

T T

The line at infinity l=(0,0,1)T is a fixed line under a 
projective transformation H if and only if H is an 

affinity (affine transformation)

Note: not fixed pointwise
Affine trans.

𝑯𝐴 =
𝑨 𝒕
𝟎𝑻 1



Conics

Parabola           Ellipse          Hyperbola

Circle

• Curve described by 2nd-degree equation in the plane

Image source: Wikipedia



Conics

• Curve described by 2nd-degree equation in the plane

or homogenized

or in matrix form  𝒙𝑇𝐶𝒙 = 0

  

a :b :c : d :e: f{ }• 5DOF (degrees of freedom):                               (defined up to scale) 

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

𝑎𝑥1
2 + 𝑏𝑥1𝑥2 + 𝑐𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0

𝑥1 𝑥2 𝑥3

𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓

𝑥1
𝑥2
𝑥3

= 0



Five Points Define a Conic

For each point the conic passes through

  

axi

2 +bxi yi +cyi

2 + dxi + eyi + f = 0

or

( ) 01,,,,, 22 =ciiiiii yxyyxx
  

  

c= a,b,c,d,e, f( )
T

 

x1

2 x1y1 y1

2 x1 y1 1

x2

2 x2y2 y2

2 x2 y2 1

x3

2 x3y3 y3

2 x3 y3 1

x4

2 x4 y4 y4

2 x4 y4 1

x5

2 x5y5 y5

2 x5 y5 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

c = 0

stacking constraints yields



Tangent Lines to Conics

The line l tangent to C at point x on C is given by l=Cx

l
x

C



Dual Conics

0ll * =C
T• A line tangent to the conic C satisfies 

• Dual conics = line conics = conic envelopes

  

 

C
* = C

-1• In general (C full rank):



Degenerate Conics

• A conic is degenerate if matrix C is not of full rank

  

 

C = lmT+mlT

e.g. two lines (rank 2)

 

l

 

m

• Degenerate line conics: 2 points (rank 2), double point (rank1)

 

C
*( )

*

 C• Note that for degenerate conics 

e.g. repeated line (rank 1)

 

l  

 

C = llT



Transformation of Points, Lines
and Conics

• Transformation for lines

• For a point transformation

𝑥′ = 𝐻𝑥

𝑙′ = 𝐻−𝑇𝑙

• Transformation for conics

• Transformation for dual conics

𝐶′ = 𝐻−𝑇𝐶𝐻−1

𝐶∗′ = 𝐻𝐶∗𝐻𝑇



Application: Removing Perspective

Two stages:

• From perspective to affine transformation via the line at infinitiy

• From affine to similarity transformation via the circular points 



Affine Rectification

projection affine

rectification
metric

rectification

1
1

𝑙1 𝑙2 𝑙3

1
1

𝑙1 𝑙2 𝑙3

−𝑇
𝑙1
𝑙2
𝑙3

=

1 −𝑙1/𝑙3
1 −𝑙2/𝑙3

1/𝑙3

𝑙1
𝑙2
𝑙3

= 
0
0
1

𝑎11 𝑎12 𝑡𝑥
𝑎21 𝑎22 𝑡𝑦
0 0 1



Affine Rectification
v1 v2

l1

l2 l4

l3

l∞

 

l = v1  v2

 

v1 = l1  l2

 

v2 = l3  l4

















321

010

001

lll



Metric Rectification

• Need to measure a quantity that is not invariant 

under affine transformations



The Circular Points 

I
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
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

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

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

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
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






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





−== iseitss

tss
i

y

x

S





H

The circular points I, J are fixed points under the 
projective transformation H iff H is a similarity



The Circular Points
• every circle intersects l∞ at the “circular points”

  

x1

2 + x2

2 + dx1x3 + ex2x3 + fx3

2 = 0

  

x1

2 + x2

2 = 0

l∞

    

   

I = 1,i,0( )
T

J = 1,-i,0( )
T

  

 

I = 1,0,0( )
T

+ i 0,1,0( )
T

• Algebraically, encodes orthogonal directions  

x3 = 0



Conic Dual to the Circular Points

















=

000

010

001
*

∞C

T

SS HCHC
*

∞

*

∞ =

The dual conic   is fixed conic under the 

projective transformation H iff H is a similarity

*

∞C

TT JIIJ*

∞ +=C



Measuring Angles via the Dual Conic

   

cosq =
l1m1 + l2m2

l1
2 + l2

2( ) m1

2 + m2

2( )

  

   

l = l1, l2, l3( )
T

  

  

m = m1,m2,m3( )
T

• Euclidean:

• Projective:

  

   

cosq =
lT C¥

* m

lT C¥

* l( ) mT C¥

* m( )

  

  

lT C¥

* m = 0 (orthogonal)

• Knowing the dual conic on the projective 
plane, we can measure Euclidean angles!

















=

000

010

001
*

∞C



Metric Rectification

• Dual conic under affinity

 

C

*  =
A t

0
T 1

 

 
 

 

 
 

I 0

0T 0

 

 
 

 

 
 

A
T 0

t
T 1

 

 
 

 

 
 =

AA
T 0

0T 0

 

 
 

 

 
 

• S=AAT symmetric, estimate from two pairs of 
orthogonal lines (due to                   )

Note: Result defined up to similarity

A-1

  

  

lT C¥

* m = 0



Update to Euclidean Space

• Metric space: Measure ratios of distances

• Euclidean space: Measure absolute distances

• Can we update metric to Euclidean space?

• Not without additional information



Important Points so far …

• Definition of 2D points and lines

• Definition of homogeneous coordinates

• Definition of projective space

• Effect of transformations on points, lines, conics

• Next: Analogous concepts in 3D



Overview

• 2D Projective Geometry

• 3D Projective Geometry

• Camera Models & Calibration



3D Points and Planes

• Homogeneous representation of 3D points and planes

0=π+π+π+π 44332211 XXXX

• The point X lies on the plane π if and only if

0=XπT

• The plane π goes through the point X if and only if

0=XπT

• 2D: duality point - line, 3D: duality point - plane



Planes from Points

0π

X

X

X

3

2

1

=

















T

T

T

0=πX  0=πX 0,=πX  π 321

TTT
andfromSolve

(solve    as right nullspace of            )π

  

 

X1

T

X 2

T

X 3

T

 
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 
 
 

 

 

 
 
 



Points from Planes

0X

π

π

π

3

2

1

=

















T

T

T

x=X M

 

M = X1 X2 X3 R43

0=π M
T

0=Xπ  0=Xπ 0,=Xπ  X 321

TTT
andfromSolve

(solve    as right nullspace of            )X

















T

T

T

3

2

1

π

π

π

Representing a plane by its span



Quadrics and Dual Quadrics

(Q : 4x4 symmetric matrix)  

  

XTQX = 0

• 9 DOF (up to scale)

• In general, 9 points define quadric 

• det(Q)=0 ↔ degenerate quadric

• tangent plane 

• Dual quadric:                     (     adjoint)

• relation to quadric                 (non-degenerate)

  

p = QX

  

  

pTQ*p = 0

  

Q* = Q-1

   

Q*

Image source: Wikipedia



Transformation of 3D points, 
planes and quadrics

  

x'= H x( )

• Transformation for points

  

X'= H X

• Transformation for planes

  

  

l'= H -T l( )  

  

p'= H -Tp

• Transformation for quadrics

  

  

C'= H -TCH -1( )  

  

Q'= H -TQH -1

• Transformation for dual quadrics

  

  

C'* = HC*HT( )  

  

Q'* = HQ*HT

(2D equivalent)



The Plane at Infinity

0

00
π π π

0- t 1

1

A

−

−

  −

 
 

    = = =    
 
 

A
H

A

T
T

T T

The plane at infinity π=(0, 0, 0, 1)T is a fixed plane 
under a projective transformation H iff H is an 

affinity 

1. canonical position

2. contains all directions 

3. two planes are parallel  line of intersection in π∞

4. line || line (or plane)  point of intersection in π∞

5. 2D equivalent: line at infinity

  

  

p¥ = 0,0,0,1( )
T

  

  

D = X1,X2,X3,0( )
T



Hierarchy of 3D Transformations

Projective

15dof

Affine

12dof

Similarity

7dof

Euclidean

6dof

Intersection and tangency

Parallellism of planes,

Volume ratios, centroids,

The plane at infinity π∞

Angles, ratios of length

The absolute conic Ω∞

Volume









1T
0

tR



Hierarchy of 3D Transformations

projective

affine

similarity

Plane at infinity

Absolute conic



The Absolute Conic

The absolute conic Ω∞ is a fixed conic under the 
projective transformation H iff H is a similarity

• The absolute conic Ω∞ is a (point) conic on π

• In a metric frame:  

  

  

X1,X2,X3( )I X1,X2,X3( )
T

or conic for directions:

(with no real points)

1. Ω∞ is only fixed as a set

2. Circles intersect Ω∞ in two circular points

3. Spheres intersect π∞ in Ω∞



The Absolute Dual Quadric

The absolute dual quadric Ω*
∞ is a fixed quadric under 

the projective transformation H iff H is a similarity

1. 8 dof

2. plane at infinity π∞ is the nullvector of Ω∞

3. angles:



Important Points so far …

• Def. of 2D points and lines, 3D points and planes

• Def. of homogeneous coordinates

• Def. of projective space (2D and 3D)

• Effect of transformations on points, lines, planes

• Next: Projections from 3D to 2D



Overview

• 2D Projective Geometry

• 3D Projective Geometry

• Camera Models & Calibration



Camera Model

Relation between pixels and rays in space

?



Pinhole Camera



Pinhole Camera

Slides from Olof Enqvist & Torsten Sattler



Pinhole Camera

Slides from Olof Enqvist & Torsten Sattler



camera
center
(0, 0, 0)T

Pinhole Camera

figure adapted from Hartley and Zisserman, 2004

𝑥

𝑦

𝑧



Projection as matrix multiplication:

De-homogenization: 

Pinhole Camera
𝑿, 𝒀, 𝒁 𝑻

=
𝑓𝑋
𝑓𝑌
𝑍

=
𝑓𝑋/𝑍
𝑓𝑌/𝑍
1



.

Projection as matrix multiplication:

Mapping to pixel coordinates:

Pinhole Camera

Slides from Olof Enqvist & Torsten Sattler

𝒑 = (𝑝𝑥 , 𝑝𝑦)

Principal point



General intrinsic camera calibration matrix:

In practice:

Intrinsic Camera Parameters

Slides from Olof Enqvist & Torsten Sattler



figure adapted from Hartley and Zisserman, 2004

global coordinates

camera coordinates

Transformation from global to camera coordinates:

Extrinsic Camera Parameters



figure adapted from Hartley and Zisserman, 2004

Projection from 3D global coordinates to pixels:

projection matrix

Projection Matrix

3x4 matrix

(maps from  ℙ3 to ℙ2)



Practical Camera Calibration

Unknown: constant camera intrinsics K 

(varying) camera poses R,t

Known: 3D coordinates of chessboard corners

=> Define to be the z=0 plane (X=[X1 X2 0 1]T)

Point is mapped as   λx = K (r1 r2 r3 t) X

λx = K (r1 r2 t) [X1 X2 1]’

Homography H between image and chess coordinates, estimate from

known Xi and measured xi

Method and Pictures from Zhang (ICCV’99): “Flexible Camera Calibration By Viewing a 

Plane From Unknown Orientations”



Direct Linear Transformation (DLT)



(only drop third row if wi’≠0)

Direct Linear Transformation (DLT)

• Equations are linear in h:

  

A ih = 0

• Only 2 out of 3 are linearly independent 

(2 equations per point)

• Holds for any homogeneous 

representation, e.g. (xi’,yi’,1)



• Solving for homography H

  

Ah = 0

size A is 8x9 (2eq.) or 12x9 (3eq.), but rank 8

• Trivial solution is h=09
T is not interesting

• 1D null-space yields solution of interest

pick for example the one with

  

h =1

Direct Linear Transformation (DLT)



• Over-determined solution

• No exact solution because of inexact measurement, 
i.e., “noise”

  

Ah = 0

• Find approximate solution

- Additional constraint needed to avoid 0, e.g.,

- not possible, so minimize 

  

h =1

  

Ah

  

Ah = 0

Direct Linear Transformation (DLT)



DLT Algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that 

xi’=Hxi

Algorithm

(i) For each correspondence xi ↔xi’ compute Ai. Usually 

only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V

(iv) Determine H from h



Importance of Normalization

~102 ~102 ~102 ~102 ~104 ~104 ~10211

orders of magnitude difference!

Monte Carlo simulation 

for identity computation based on 5 points

(not normalized ↔ normalized)



Normalized DLT Algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that 

xi’=Hxi

Algorithm

(i) Normalize points  

(ii) Apply DLT algorithm to 

(iii) Denormalize solution

Normalization (independently per image):

• Translate points such that centroid is at origin

• Isotropic scaling such that mean distance to origin is

   

2



Geometric Distance
measured coordinates

estimated coordinates

true coordinates

x
x̂
x

Error in one image

e.g. calibration pattern

Symmetric transfer error

d(.,.) Euclidean distance (in image)

   

x'

Reprojection error

subject to



Reprojection Error



Statistical Cost Function and 
Maximum Likelihood Estimation

• Optimal cost function related to noise model

• Assume zero-mean isotropic Gaussian noise 
(assume outliers removed)

( ) ( ) ( )22
2/xx,

2
2

1
xPr 



de−=

Error in one image

Maximum Likelihood Estimate:

 

min d  x i ,Hx i( )
2





Gold Standard Algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the Maximum Likelihood Estimation of H

(this also implies computing optimal xi’=Hxi)

Algorithm

(i) Initialization: compute an initial estimate using 

normalized DLT or RANSAC 

(ii) Geometric minimization of  symmetric transfer error:

• Minimize using Levenberg-Marquardt over 9 entries of h

or reprojection error:

• compute initial estimate for optimal {xi}

• minimize cost                                    over {H,x1,x2,…,xn}

• if many points, use sparse method



Radial Distortion

• Due to spherical lenses (cheap)

• (One possible) model:

R

2 2 2 2 2

1 2( , ) (1 ( ) ( ) ...)
x

x y K x y K x y
y

 
= + + + + +  

 
R:

straight lines are not straight anymore



Calibration with Radial Distortion

• Low radial distortion:

• Ignore radial distortion during initial calibration

• Estimate distortion parameters, refine full calibration

• High radial distortion: Simultaneous estimation
• Fitzgibbon, “Simultaneous linear estimation of multiple view geometry and lens 

distortion”, CVPR 2001

• Kukelova et al., “Real-Time Solution to the Absolute Pose Problem with 
Unknown Radial Distortion and Focal Length”, ICCV 2013

• Larsson et al., “Revisiting Radial Distortion Absolute Pose”, ICCV 2019



Bouguet Toolbox

http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/


Rolling Shutter Cameras

• Image build row by row

• Distortions based on depth and speed

• Many mobile phone cameras have rolling shutter

Video credit: Olivier Saurer



Rolling Shutter Effect

Global shutter Rolling shutter

Slide credit: 
Cenek Albl



Event Cameras



Feb 22 Introduction

Mar 1 Geometry, Camera Model, Calibration 

Mar 8 Features, Tracking / Matching

Mar 15 Project Proposals by Students

Mar 22 Structure from Motion (SfM) + papers

Mar 29 Dense Correspondence (stereo / optical flow) + papers

Apr 5 Easter break

Apr 12 Bundle Adjustment & SLAM + papers

Apr 19 Student Midterm Presentations

Apr 26 Multi-View Stereo & Volumetric Modeling + papers

May 3 3D Modeling with Depth Sensors + papers

May 10 Guest lecture + papers

May 17 Guest lecture + papers

May 31 Student Project Demo Day = Final Presentations

Schedule



Reminder

• Project presentation in 2 weeks

• Form team & decide project topic

• By March 8nd

• Talk with supervisor, submit proposal

• By March 15th



Next class:
Features, Tracking / Matching


