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Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration 

Mar 4 Guest lecture + Features, Tracking / Matching

Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday

Schedule



Features & Correspondences

feature extraction, image descriptors,
feature matching, feature tracking

Chapters 4, 8 in Szeliski’s Book
[Shi & Tomasi, Good Features to Track, CVPR 1994]

3D Vision – Class 3



Overview

• Local Features

• Invariant Feature Detectors

• Invariant Descriptors & Matching

• Feature Tracking



Features are key component of many 3D Vision algorithms

Importance of Features



Importance of Features

Schönberger & Frahm, Structure-From-Motion Revisited, CVPR 2016



Feature Detectors & Descriptors

• Detector: Find salient structures

• Corners, blob-like structures, ...

• Keypoints should be repeatable

• Descriptor: Compact representation of 
image region around keypoint

• Describes patch around keypoints

• Establish matches between images by
comparing descriptors



(Lowe, Distinctive Image Features From Scale-Invariant 

Keypoints, IJCV’04)

Feature Detectors & Descriptors



Feature Matching vs. Tracking

• Extract features independently
• Match by comparing descriptors

• Extract features in first image
• Find same feature in next view

Matching Tracking



Wide Baseline Matching 

• Requirement to cope with larger 
variations between images

• Translation, rotation, scaling

• Perspective foreshortening

• Non-diffuse reflections

• Illumination

 geometric

transformations

photometric

transformations



Good Detectors & Descriptors?

• What are the properties of good detectors and 
descriptors?

• Invariances against transformations

• How to design such detectors and descriptors?

• This lecture:

• Feature detectors & their invariances

• Feature descriptors, invariances, & matching

• Feature tracking



Overview

• Local Features Intro

• Invariant Feature Detectors

• Invariant Descriptors & Matching

• Feature Tracking



Good Feature Detectors?

• Desirable properties?

• Precise (sub-pixel perfect) localization

• Repeatable detections under

• Rotation

• Translation

• Illumination

• Perspective distortions

• …

• Detect distinctive / salient structures



Feature Point Extraction

homogeneous

edge

corner

• Find “distinct” keypoints (local image patches)
• As different as possible from neighbors



• Compare intensities pixel-by-pixel

Comparing Image Regions

I(x,y) I´(x,y)
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SSD =  I (x,y) − I(x,y) 
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• Dissimilarity measure: Sum of Squared
Differences / Distances (SSD)



Finding Stable Features

• Measure uniqueness of candidate

• Approximate SSD for small displacement Δ

• possible weights
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Finding Stable Features

homogeneous

edge

corner

Suitable feature positions should maximize

i.e. maximize smallest eigenvalue of M



Harris Corner Detector

• Use small local window:

• Directly computing eigenvalues λ1, λ2 of M is 
computationally expensive

• Alternative measure for “cornerness”:

=   𝜆1 ⋅ 𝜆2 − 𝑘 𝜆1 + 𝜆2
2

• Homogeneous: 𝜆1, 𝜆2 small ⇒ 𝑅 small

• Edge: 𝜆1 ≫ 𝜆2 ≈ 0 ⇒ 𝑅 = 𝜆1 ⋅ 0 − 𝑘𝜆1
2 < 0

• Corner: 𝜆1, 𝜆2 large ⇒ 𝑅 large



Harris Corner Detector

• Alternative measure for “cornerness”

• Select local maxima as keypoints

• Subpixel accuracy through second order 
surface fitting (parabola in 1D)



Harris Corner Detector

• Keypoint detection: Select strongest features over whole
image or over each tile (e.g. 1000 per image or 2 per tile)

• Invariances against geometric transformations
• Shift / translation?



Geometric Invariances

Scale

Affine
(approximately invariant

w.r.t. perspective/viewpoint)

Rotation

Harris: Yes

Harris: No

Harris: No



MSER SIFT

Harris corners
VIP

Harris 

corners 

2D Transformations of a Patch



Scale-Invariant Feature Transform (SIFT)

• Detector + descriptor (later)

• Recover features with position, 
orientation and scale

(Lowe, Distinctive Image Features From Scale-Invariant 

Keypoints, IJCV’04)



• Look for strong responses of Difference-of-
Gaussian filter (DoG)

• Approximates Laplacian of Gaussian (LoG)

• Detects blob-like structures

• Only consider local extrema

3 2=k

Position



Scale
• Look for strong DoG responses over scale space
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Scale

• Only consider local maxima/minima in 
both position and scale 

• Fit quadratic around extrema for sub-
pixel & sub-scale accuracy



Minimum Contrast and “Cornerness”

all features



after suppressing edge-like features

Minimum Contrast and “Cornerness”



after suppressing edge-like features + small

contrast features

Minimum Contrast and “Cornerness”



Invariants So Far

• Translation?

• Scale?

• Rotation?

Yes

Yes

Yes



Orientation Assignment

• Compute gradient for each 
pixel in patch at selected 
scale

• Bin gradients in histogram 
& smooth histogram

• Select canonical 
orientation at peak(s)

• Keypoint = 4D coordinate 
(x, y, scale, orientation)

0 2 



Invariants So Far

• Translation

• Scale

• Rotation

• Brightness changes:

• Additive changes?

• Multiplicative changes?



MSER SIFT

Harris corners
VIP

Harris corners

2D Transformations of a Patch



Perspective effects can locally be approximated
by affine transformation

Affine Invariant Features



Extreme Wide Baseline Matching

(Matas et al., Robust Wide Baseline Stereo from Maximally Stable Extremal

Regions, BMVC’02)

• Detect stable keypoints using the Maximally
Stable Extremal Regions (MSER) detector
• Detections are regions, not points!



Maximally Stable Extremal Regions

Extremal regions:

• Much brighter than surrounding

• Use intensity threshold



Maximally Stable Extremal Regions

Extremal regions:

• OR: Much darker than surrounding

• Use intensity threshold



Maximally Stable Extremal Regions

• Regions: Connected components at a threshold

• Region size = #pixels

• Maximally stable: Region constant near some
threshold



A Sample Feature



T is maximally stable wrt. surrounding

A Sample Feature



• Compute „center of gravity“

• Compute Scatter (PCA / Ellipsoid)

From Regions To Ellipses



From Regions To Ellipses

• Ellipse abstracts from pixels!

• Geometric representation: position/size/shape



• Normalize to „default“ position, size, shape

• For example: Circle of radius 16 pixels

Achieving Invariance



• Normalize ellipse to circle (affine transformation)

• 2D rotation still unresolved



• Same approach as for SIFT:
Compute histogram of local gradients

• Find dominant orientation in histogram

• Rotate local patch into dominant orientation



• Detect sets of pixels brighter/darker than 
surrounding pixels

• Fit elliptical shape to pixel set

• Warp image so that ellipse becomes circle

• Rotate to dominant gradient direction (other 
constructions possible as well)

Summary: MSER Features



• Constant brightness changes (additive and 
multiplicative)

• Rotation, translation, scale

• Affine transformations

Affine normalization of feature leads to similar
patches in different views !

MSER Features - Invariants



MSER
SIFT

Harris corners
VIP

In practice hardly 
observable for small 

patches !

2D Transformations of a Patch

Harris corners



• Use known planar geometry to remove
perspective distortion

• Or: Use vanishing points to rectify patch

Viewpoint Invariant Patches (VIP)

(Wu et al., 3D Model Matching with Viewpoint Invariant 

Patches (VIPs), CVPR’08)



Use learned monocular depth to identify planes

Warp to fronto-parallel before feature detection

(Toft et al., Single-Image Depth Prediction Makes Feature 

Matching Easier, ECCV’20)



• In the age of deep learning, can we learn good 
detectors from data?

• How can we model repeatable feature detection?

• Learn ranking function H(x|w): R2 → [-1, 1]

with parameters w

• Interesting points close to -1 or 1

Learning Feature Detectors

(Savinov et al., Quad-networks: unsupervised learning to 

rank for interest point detection, CVPR’17)



• Learn ranking function H for patches p such that 
H(p) > H(p’) ⟺ H(T(p)) > H(T(p’))

• Select keypoints as top / bottom quantiles

• Learn robustness to different transformations T

Learning Feature Detectors

(Savinov et al., Quad-networks: unsupervised learning to 

rank for interest point detection, CVPR’17)



Detection Results

(Savinov et al., Quad-networks: unsupervised learning to 

rank for interest point detection, CVPR’17)

Difference-of-

Gaussians

learned



• Motivation: Detect points / regions that are

• Repeatable

• Invariant under different conditions

• Key ideas:

• Detect keypoints as local extrema of suitable 
response function (e.g., DoG)

• Scale-invariance by constructing scale space

• Rotation-invariance from dominant gradient 
direction

• Obtain frame of reference through normalization

Summary Feature Detectors



Overview

• Local Features Intro

• Invariant Feature Detectors

• Invariant Descriptors & 
Matching

• Feature Tracking



• For each feature in image 1 find the feature in 
image 2 that is most similar and vice-versa

• Keep mutual best matches

• What does most similar mean?

• Compare descriptor per patch, compare descriptors

• What is a good feature descriptor?

Feature Matching



• Compare intensities pixel-by-pixel

Comparing Image Regions

I(x,y) I´(x,y)

 

SSD =  I (x,y) − I(x,y) 
2

y


x



• Dissimilarity measure: Sum of Squared
Differences / Distances (SSD)

• What transformations does this work for?

• Shifts / translation?

• Uniform brightness changes?



Comparing Image Regions

I(x,y) I´(x,y)
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• Compare intensities pixel-by-pixel

• Dissimilarity measure: Zero-Mean
Normalized Cross Correlation (NCC)



Feature Matching Example

0.96 -0.40 -0.16 -0.39 0.19

-0.05 0.75 -0.47 0.51 0.72

-0.18 -0.39 0.73 0.15 -0.75

-0.27 0.49 0.16 0.79 0.21

0.08 0.50 -0.45 0.28 0.99

1 5

2
4

3

1 5

2
4

3

• What transformations does this work for?
• Shift / translation, uniform brightness changes

• Non-uniform brightness changes?



Local Patch Descriptors

• Small misalignments cannot be avoided

• Non-uniform brightness changes

More tolerant comparison needed!



• Ignore pixel values, use only local gradients

• Gradient direction more important than positions

• Partition into sectors to retain spatial information

Gradient MagnitudeGradient Orientation/Magnitude

Lowe’s SIFT Descriptor

(Lowe, Distinctive Image Features From Scale-Invariant Keypoints, IJCV’04)



Lowe’s SIFT Descriptor

• Thresholded image gradients are sampled over 
16x16 array of locations in scale space

• Create array of orientation histograms

• 8 orientations x 4x4 histogram array = 128D



• Quantize gradient orientations in 45° steps

• Bin gradients into histogram

• Weight of gradient = gradient magnitude

• Concatenate histograms

Orientation Histogram per SectorGradient Orientation/Magnitude

35

12

10

25

…

29

Descriptor Computation



• Why 4x4 regions and 8 histogram bins?

• Careful parameter tuning!

Descriptor Computation



Descriptor Computation

• Quantization errors: Small differences can lead to 
different bins !

• 22° quantized/rounded to  0°

• 23° quantized/rounded to 45°

• Can be caused by

• Small errors in feature position, size, shape, or
orientation

• Image noise

• Descriptor must be robust against this!



20

°

0

°
45

°
90

°
…

Hard Binning

1.0

22

°

2.0

If orientation is 3° different, 
all measurements go to 

second bin!

➔ Sudden change in 

histogram from

(2 0 0 0) to (0 2 0 0)

Hard Binning vs. Soft Binning



20

°

0

°
45

°
90

°
…

Soft Binning

0.56

22

°

1.07

If orientation is 3° different, 
descriptor changes only 

gradually !

0.440.93

0.56 0.44

Soft weights:

„Bin Correctness“

Hard Binning vs. Soft Binning



• Translation, scale, affine deformations?

• Inherited from detector

• Rotation?

• Align bins / histograms with dominant orientation of patch

• Uniform intensity / illumination changes?

• Adding constant value does not affect gradient

• Normalize vector to handle multiplicative changes

• Robustness to non-uniform changes?

• Idea: Change affects gradient magnitude but not direction

• After normalization: Clip descriptor entries to be ≤ 0.2

• Renormalize!

• But no true invariance!

Descriptor Invariance?



Two images in a dense image sequence:

• Think about maximum movement d (e.g. 50 pixel)

• Search in a window +/- d of old position

• Compare descriptors (Euclidean distance), choose 
nearest neighbor

Descriptor Matching - Scenario I



Two arbitrary images / wide baseline

• Brute force search (e.g. GPU)

• OR: Approximate nearest neighbor search 
in descriptor space (kd-tree)

• OR: Find small set of matches, predict others

Descriptor Matching - Scenario II



kd-tree-based Matching

• Iteratively split dimension with largest variance

• Matching: Traverse tree based on splits

• Depth 30 ≈ 1B descriptors (~119GB for SIFT) 

• Curse of Dimensionality: Need to visit all leaves to 
guarantee finding nearest neighbor

• Approximate search: Visit N leaf nodes

Descriptor Space kd-tree



Spatial Search Window:

• Requires/exploits good prediction

• Can avoid far away similar-looking features

• Good for sequences

Descriptor Space:

• Initial tree setup

• Fast lookup for huge amounts of features

• More sophisticated outlier detection required

• Good for asymmetric (offline/online) problems,
registration, initialization, object recognition, 
wide baseline matching

Descriptor Matching



• Not every feature repeats / has nearest neighbor

• How to detect such wrong matches?

• Thresholding on Euclidean distance not
meaningful

Correspondence Verification

Descriptor Space



• Discard „non-distinctive“ matches through Lowe‘s 
ratio test / SIFT ratio test

• Check for bi-directional consistency

• Such heuristics will not eliminate all wrong
matches

Correspondence Verification



Binary Descriptors

• SIFT is powerful descriptor, but slow to compute

• Faster alternative: Binary Descriptors:

• Idea: Compute only sign of gradient

• Efficient test: Compare pixel intensities

• Random comparisons work already very well

• Pros:

• Efficient computation

• Efficient descriptor comparison via Hamming distance
(1M comparison in ~2ms for 64D)

• Cons:

• Not as good as SIFT / real-valued descriptors

• Many bits rather random = problems for efficient nearest 
neighbor search



• BRIEF[Calonder10]: binary descriptor
(tests=position a darker than b), compare
descriptors by XOR (Hamming) + POPCNT

• RIFF[Takacs10]: CENSURE + gradients
tangential/radial

• ORB[Rublee11] FAST+orientation

• BRISK[Leutenegger11] FAST+scale+BRIEF

• FREAK[Alahi12] FAST + “daisy”-BRIEF

• Lucid[Ziegler12]: “sort intensities”

• D-BRIEF[Trzcinski12]:Box-Filter+learned 
projection+BRIEF

• LDA HASH[Strecha12]: binary tests
on descriptor

Binary Descriptors



• In the age of deep learning, can we learn good 
descriptors from data?

• Idea: Learn a mapping such that descriptors of 
same physical point have small L2 distance

Learning Feature Descriptors

(Simo-Serra et al., Discriminative Learning of Deep 

Convolutional Feature Point Descriptors, ICCV’15)



• Learn mapping from patch to descriptor in Rn

• Popular approach: Learning via triplets

Learning Feature Descriptors

(Schönberger et al., Evaluation of Hand-Crafted and 

Learned Local Features. CVPR 2017)

CNN

CNN

CNN

triplet loss:



• But idea is actually 
much older (>10 years)

Learning Feature Descriptors

(Özuysal et al., Fast Keypoint

Recognition in Ten Lines of Code, 

CVPR’07)



• Affine feature evaluation + binaries:
http://www.robots.ox.ac.uk/~vgg/research/affine/

• SIFT, MSER & much more (mostly Matlab):
http://vlfeat.org

• SURF:
http://www.vision.ee.ethz.ch/~surf/

• GPU-SIFT:
http://www.cs.unc.edu/~ccwu/siftgpu/

• DAISY (dense descriptors)
http://cvlab.epfl.ch/~tola/daisy.html

• FAST[er] corner detector (simple but …)
http://svr-www.eng.cam.ac.uk/~er258/work/fast.html

• OpenCV (MSER, binary descriptors, matching, …)
http://opencv.org

Some Feature Resources

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://vlfeat.org
http://www.vision.ee.ethz.ch/~surf/
http://www.cs.unc.edu/~ccwu/siftgpu/
http://cvlab.epfl.ch/~tola/daisy.html
http://svr-www.eng.cam.ac.uk/~er258/work/fast.html
http://opencv.org


• Representation of normalized patches

• Inherit geometric invariances from detector

• Feature matching by comparing descriptors

• Key ideas:

• Robustness against small changes in illumination

• Robustness against small shifts

• Pool information (e.g., gradients in SIFT)

• More invariance = less powerful descriptors

• What invariances do you need?

• E.g.: Rotation-invariance not needed?

• If not, disable rotation estimation in SIFT

Summary Feature Descriptors



Overview

• Local Features Intro

• Invariant Feature Extraction & 
Matching

• Feature Tracking



Feature Tracking

• Identify features and track them 
over video

• Small difference between frames

• Potential large difference overall

• Standard approach: 

KLT (Kanade-Lukas-Tomasi)



Tracking Corners in Video



Good Features to Track

• Use same window in feature selection as for 
tracking itself (see first part of lecture)

• Compute motion assuming it is small

differentiate wrt. Δ:

linear 
system 

in Δ

𝐼 𝒙 + 𝚫 ≈ 𝐽(𝒙)



Good Features to Track

• Solve equation by iterative minimization:

• Linearize around current position (zero displacement)

• Solve for displacement locally around point & iterate

• Can be computed efficiently

• Can be extended to affine transformation as well

• … but a bit more complex

• Solve 6x6 instead of 2x2 system



Example

Simple displacement is sufficient between consecutive 
frames, but not to compare to reference template

translation

affine



Example

affine

translation

• Problem: Affine model tries to deform sign to shape of 
window, tries to track this shape instead

• Solution: Perform affine alignment between first and 
last frame, stop tracking features with too large errors



• Brightness constancy assumption:

Intensity Linearization

(small motion)

• 1D example

possibility for iterative refinement

𝑥



• Brightness constancy assumption

Intensity Linearization

(small motion)

• 2D example

(2 unknowns)

(1 constraint)
?

isophote I(t)=I

isophote I(t+1)=I

the “aperture” problem

Barberpole illusion (image source: Wikipedia)



Intensity Linearization

• How to deal with aperture problem?

Assume neighbors have same displacement

(3 constraints if color gradients are different)



Lucas-Kanade

Assume neighbors have same displacement

least-squares:



Revisiting the Small Motion Assumption

• Is this motion small enough?

• Probably not—it’s much larger than one pixel 
(1st order Taylor not sufficient)

• How might we solve this problem?
* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Reduce the Resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



image It-1 image I

Gaussian pyramid of image It-1 Gaussian pyramid of image I

image Iimage It-1
u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-Fine Optical Flow 
Estimation

slides from

Bradsky and Thrun 



image Iimage J

Gaussian pyramid of image It-1 Gaussian pyramid of image I

image Iimage It-1

Coarse-to-Fine Optical Flow 
Estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

slides from

Bradsky and Thrun 



• Motivation: Exploit small motion between 
subsequent (video) frames

• Key ideas:

• Brightness constancy assumption

• Linearize complex motion model and solve 
iteratively

• Use simple model (translation) for frame-to-
frame tracking

• Compute affine transformation to first 
occurrence to avoid switching tracks

Summary Feature Tracking



• Feature detectors: Reliably detect “interesting” 
regions in image under

• Geometric transformations

• Brightness changes

• Feature descriptors: Representation of patches

• Input: Normalized patch from detector

• Compute descriptor (=point in d-dimensional space)

• Descriptor matching = approx. nearest neighbor search

• Feature tracking

This Lecture



Feb 22 Introduction

Mar 1 Geometry, Camera Model, Calibration 

Mar 8 Features, Tracking / Matching

Mar 15 Project Proposals by Students

Mar 22 Structure from Motion (SfM) + papers

Mar 29 Dense Correspondence (stereo / optical flow) + papers

Apr 5 Easter break

Apr 12 Bundle Adjustment & SLAM + papers

Apr 19 Student Midterm Presentations

Apr 26 Multi-View Stereo & Volumetric Modeling + papers

May 3 3D Modeling with Depth Sensors + papers

May 10 Guest lecture + papers

May 17 Guest lecture + papers

May 31 Student Project Demo Day = Final Presentations

Schedule



Next week: Project Proposals

Reminder: Submit your 
proposal until Monday!

Reminder: Prepare short 
presentation for Monday!

(more details on Moodle!)


