

3D Vision

Marc Pollefeys Daniel Barath

Spring 2024

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment & SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo & Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers
May 20	Holiday

3D Vision – Class 4

Structure-from-Motion

Chapter 7 in Szeliski's Book Chapter 9 in Hartley & Zisserman (<u>online</u>) <u>Tutorial</u> chapters <u>3.2</u> and <u>4</u>

Last Lecture: Local Features

Features are key component of many 3D Vision algorithms

Today: Structure-from-Motion (SfM)

Rome dataset

74,394 images

Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-Motion revisited, CVPR 2016

Topics Today

Estimate motion between two images

- Epipolar geometry
- Two view Structure-from-Motion
- Estimate structure from motion
 - Triangulation
- Estimate camera pose from structure
 - Absolute camera pose solvers

Sequential / Incremental SfM

Sequential / Incremental SfM

Two view reconstruction

- Epipolar geometry
- Fundamental matrix F
- Essential matrix E
- Computing F and E

The Fundamental Matrix **F**

- Algebraic representation of epipolar geometry
 - 3x3 Matrix
 - Maps points to epipolar lines

$$\ell' = F x$$

$$\boldsymbol{\ell} = F^T \boldsymbol{x'}$$

The Fundamental Matrix **F**

Fundamental matrix encodes relative pose

*up to a projective coordinate change!

Properties of **F**

F is the unique 3x3 rank 2 matrix that satisfies $x'^T F x=0$ for all $x \leftrightarrow x'$

- Transpose: if F is fundamental matrix for (I,I'), then
 F^T is fundamental matrix for (I',I)
- Epipolar lines: $I' = Fx \& I = F^Tx'$
- **Epipoles:** on all epipolar lines, thus $e^{T}Fx=0$, $\forall x \Rightarrow e^{T}F=0$, similarly Fe=0
- **Rank 2:** epipoles in nullspace!
- F has 7 degree of freedom (DOF),
 i.e. 3x3 -1(homogeneous) -1(rank 2)

The Essential Matrix E

• Calibrated case: $P_1 = \mathbf{X}_1[I \ 0], \ P_2 = \mathbf{X}_2[R \ \mathbf{t}]$

Properties of **E**

E is an essential matrix iff two of its singular values are equal, third is 0

• Relationship to **F**? $x_2^T F x_1 = 0$ $\hat{x}_2^T E \hat{x}_1 = 0$ $\hat{x}_i = K_i^{-1} x_i$

$$x_2^T \underbrace{K_2^{-T} E K_1^{-1}}_F x_1 = 0$$

Inherits F's properties (see previous slide)

Degree of Freedom of $E = [t]_{\times}R$

Computation of **F** & **E**

- Linear (8-point) (F & E)
- Minimal (7-point) (**F** & **E**)
- Calibrated (5-point) (only E)

Linear Solution (8-point)

- Basic epipolar equation: $x'^T Fx = 0$
- Expand:

 $x' x f_{11} + x' y f_{12} + x' f_{13} + y' x f_{21} + y' y f_{22} + y' f_{23} + x f_{31} + y f_{32} + f_{33} = 0$

Separate known and unknown variables:

$$\begin{split} & \left[x'x, x'y, x', y'x, y'y, y', x, y, 1\right] \left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right]^{\mathrm{T}} = 0 \\ & \text{(data)} & \text{(unknowns)} \end{split}$$

- Write as linear equation: $\begin{bmatrix} x'_{1} x_{1} & x'_{1} y_{1} & x'_{1} & y'_{1} x_{1} & y'_{1} y_{1} & y'_{1} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x'_{n} x_{n} & x'_{n} y_{n} & x'_{n} & y'_{n} x_{n} & y'_{n} y_{n} & y'_{n} & x_{n} & y_{n} & 1 \end{bmatrix} f = 0$
- 8 unknowns (up to scale): Use 8 points

Normalized 8-point Algorithm f_{11} f_{12} f_{13} f_{21} f_{22} f_{23} $x_n x_n$ $y_n x_n$ x_n x_n y_n y_n y_n y_n y_n x_n y_n f_{31} 10000 f_{32} Orders of magnitude difference between column of data matrix

 \rightarrow least-squares yields poor results

- Normalize point coordinates prior to computing F
- Same as for the normalized DLT algorithm for homography estimation (see lecture 2)

The Singularity Constraint

The Singularity Constraint

 $e^{T} F = 0$ Fe = 0 det F = 0 rank F = 2

• SVD from linearly computed F matrix (rank 3): $F = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} V^{T} = U_1 \sigma_1 V_1^{T} + U_2 \sigma_2 V_2^{T} + U_3 \sigma_3 V_3^{T}$

• Compute closest rank-2 approximation: $\min \|\mathbf{F} - \mathbf{F}'\|_{F}$

$$\mathbf{F'} = \mathbf{U} \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & 0 \end{bmatrix} \mathbf{V}^{\mathrm{T}} = \mathbf{U}_1 \sigma_1 \mathbf{V}_1^{\mathrm{T}} + \mathbf{U}_2 \sigma_2 \mathbf{V}_2^{\mathrm{T}}$$

The Singularity Constraint

Minimal Case: 7 Point Correspondences

- Setup linear system from 7 correspondences: $\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_7 x_7 & x'_7 y_7 & x'_7 & y'_7 x_7 & y'_7 y_7 & y'_7 & x_7 & y_7 & 1 \end{bmatrix} f = 0$
- Resulting solution has 2D solution space $A = U_{7x7} \text{diag}(\sigma_1, ..., \sigma_7, 0, 0) V_{9x9}^{T} \implies A[V_8V_9] = 0_{9x2}$
- F is linear combination of V_8 and V_9 : $x_i^{T}(F_1 + \lambda F_2)x_i = 0, \forall i = 1...7$
 - ... but $F_1 + \lambda F_2$ not automatically rank 2

Minimal Case: 7 Point Correspondences

Enforce rank-2 constraint from determinant:

 $\det(F_{1} + \lambda F_{2}) = a_{3}\lambda^{3} + a_{2}\lambda^{2} + a_{1}\lambda + a_{0} = 0$

- Cubic equation in λ
- Either 1 or 3 solutions

Calibrated Case: 5-point Solver

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003

Calibrated Case: 5-point Solver

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003

Perform Gauss-Jordan elimination on polynomials
[n] represents polynomial of degree n in z

	A	x^3	y^3	x^2y	xy^2	x^2z	x^2	$y^2 z$	y^2	xyz	xy	x	y	1
	$\langle a \rangle$	1										[2]	[2]	[3]
	$\langle b \rangle$		1									[2]	[2]	[3]
	$\langle c \rangle$			1								[2]	[2]	[3]
	$\langle d \rangle$				1							[2]	[2]	[3]
(1)	$\langle e \rangle$					1						[2]	[2]	[3]
$\langle \kappa \rangle$	$Z\langle f \rangle$						1					[2]	[2]	[3]
/1	$\langle g \rangle$							1				[2]	[2]	[3]
$\langle \iota \rangle$	$\mathbf{Z}\langle h\rangle$								1			[2]	[2]	[3]
m\[$\langle i \rangle$									1		[2]	[2]	[3]
<i>m</i> /	$\mathbf{Z}\langle j \rangle$										1	[2]	[2]	[3]

$\langle k \rangle = \langle e \rangle - z \langle f \rangle$	В	x	y	1	
$\langle l \rangle \equiv \langle a \rangle - z \langle h \rangle$	$\langle k \rangle$	[3]	[3]	[4]	$\langle n \rangle \equiv det(B$
$\langle m \rangle \equiv \langle i \rangle - z \langle j \rangle$	$\langle l \rangle$	[3]	[3] [3]	[4]	
	\''''		U U		

Automatic Computation of **F**

Step 1. Extract features Step 2. Compute a set of potential matches Step 3. Robust estimation of F via RANSAC Step 4. Compute F based on all inliers Step 5. Look for additional matches Step 6. Refine F based on all correct matches

M. A.: Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

M. A.: Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

M. A.: Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

M. A., Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

- Problem: Estimate **F** in presence of wrong matches
- RANSAC algorithm:
 - Repeat:
 - Randomly select minimal sample (5 or 7 points)
 - Compute hypothesis for F from minimal sample

η=0.01%

- Verify hypothesis: Count inliers
- Update best solution found so far
- Until prob. of not having sampled all-inlier set< η

% inliers	90%	80%	70%	60%	50%	20%
#samples (5)	5	12	25	57	145	14k
#samples (7)	7	20	54	162	587	359k

Finding More Matches

Restricted search around epipolar line (e.g. ±1.5 pixels)

Summary: Epipolar Geometry

http://danielwedge.com/fmatrix/

Sequential / Incremental SfM

Initial Motion and Structure Estimation (Calibrated Case)

- Recap Essential matrix: E=[t]_xR
- Motion for two cameras: [I|0], [R|t]
- Essential Matrix decomposition: E=UΣV^T

$$\boldsymbol{\Sigma} = \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 0 \end{pmatrix} \, \mathbf{W} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \, \mathbf{W}^{-1} = \mathbf{W}^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Recover **R** and **t** as
 - t=u₃ or t=-u₃
 - **R=UWV**^T or **R=UW**^T**V**^T
 - Four solutions, but only one meaningful

(see Hartley and Zisserman, Sec.9.6)

Using the Cheirality Constraint

(see Hartley and Zisserman, Sec. 9.6)

Triangulation

- Given: Motion, correspondence
- Estimate 3D point via **triangulation**

Triangulation

Backprojection

$$\lambda \mathbf{x} = \mathbf{P} \mathbf{X}$$

- $\begin{vmatrix} \lambda x \\ \lambda y \\ \lambda \end{vmatrix} = \begin{vmatrix} P_1 \\ P_2 \\ P_3 \end{vmatrix} X$ $\begin{array}{rcl} \mathbf{P}_{3}\mathbf{X}x &=& \mathbf{P}_{1}\mathbf{X} \\ \mathbf{P}_{3}\mathbf{X}y &=& \mathbf{P}_{2}\mathbf{X} \end{array} \quad \begin{bmatrix} \mathbf{P}_{3}x - \mathbf{P}_{1} \\ \mathbf{P}_{3}y - \mathbf{P}_{2} \end{bmatrix} \mathbf{X} = \mathbf{0}$
- Triangulation

$$\begin{bmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ P_{3}'x' - P_{1}' \\ P_{3}'y' - P_{2}' \end{bmatrix} X = 0$$

Maximum Likelihood Triangulation (geometric error) $\arg\min_{\mathbf{X}}\sum_{\cdot}\left(\mathbf{x}_{i}-\lambda^{-1}\mathbf{P}_{i}\mathbf{X}\right)^{2}$

Optimal 3D Point in Epipolar Plane

• Given an epipolar plane, find best 3D point for (m₁,m₂)

- Select closest points $(m_1^{\prime}, m_2^{\prime})$ on epipolar lines
- Obtain 3D point through exact triangulation
- Guarantees minimal reprojection error (given this epipolar plane)

Optimal Two-View Triangulation

- Non-iterative method: (Hartley and Sturm, CVIU´97)
 - Determine optimal epipolar plane for reconstruction

 $D(\mathbf{m}_1, \mathbf{l}_1(\alpha))^2 + D(\mathbf{m}_2, \mathbf{l}_2(\alpha))^2$ (polynomial of degree 6)

- Reconstruct optimal point from selected epipolar plane
- Note: Only works for two views

Sequential / Incremental SfM

Pose Estimation from 2D-3D Matches

- Compute **P**_{*i*+1} using robust approach (6-point RANSAC)
- Extend and refine reconstruction

Compute P with 6-point RANSAC

- Generate hypothesis using 6 points $\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$ (two equations per point)
- Planar scenes are degenerate!

(similar DLT algorithm as see in 2nd lecture for homographies)

3-Point-Perspective Pose – P3P (Calibrated Case)

rig. 2. Snows the differences of a algebraic derivations among six solution rechniques

R. Haralick, D. Lee, K. Ottenburg, M. Nolle. Review and analysis of solutions of the three point perspective pose estimation problem, CVPR 1991

Incremental SfM

Initialize:

- Compute pairwise epipolar geometry
- Find pair to initialize structure and motion

• Repeat:

- For each additional view
 - Determine pose from structure
 - Extend structure
 - Refine structure and motion (bundle adjustment, see lecture 7)

Global SfM

• Initialize:

• Compute pairwise epipolar geometry

• Compute:

- Estimate all orientations
- Estimate all positions
- Triangulate structure
- Refine structure and motion (bundle adjustment)
- **Pros**: More efficient, more accurate
- Con: Less robust

SfM Software

- <u>Colmap</u> (Johannes Schönberger)
 - Incremental SfM, very efficient, nice GUI, open source
- <u>VisualSFM</u> (Changchang Wu)
 - Incremental SfM, very efficient, GUI, binaries
- **Bundler** (Noah Snavely)
 - Incremental SfM, open source
- **<u>OpenMVG</u>** (Pierre Moulon)
 - Incremental and Global SfM, open source
- Theia (Chris Sweeney)
 - Incremental and Global SfM, very efficient, open source

Summary

Estimate motion between two images

- Epipolar geometry
- Estimate structure from motion
 - Triangulation
- Estimate camera pose from structure
 - Absolute camera pose solvers
 - DLT 6-point solver (P6P)
 - 3-point-perspective pose solver (P3P)

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment & SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo & Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers
May 20	Holiday

Next week: Dense Correspondence / Stereo

Now: Paper presentations!

