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Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration 

Mar 4 Guest lecture + Features, Tracking / Matching

Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday

Schedule



Structure-from-Motion

Chapter 7 in Szeliski’s Book
Chapter 9 in Hartley & Zisserman (online)

Tutorial chapters 3.2 and 4

3D Vision – Class 4

http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
http://www.cs.unc.edu/~marc/tutorial/
http://www.cs.unc.edu/~marc/tutorial/node42.html
http://www.cs.unc.edu/~marc/tutorial/node60.html


Features are key component of many 3D Vision algorithms

Last Lecture: Local Features



Today: 
Structure-from-Motion (SfM)

Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-Motion revisited, CVPR 2016



Topics Today

• Estimate motion between two images

• Epipolar geometry

• Two view Structure-from-Motion

• Estimate structure from motion

• Triangulation

• Estimate camera pose from structure

• Absolute camera pose solvers



Sequential / Incremental SfM

3. Extend Motion

2. Initialize Structure

4. Extend Structure

1. Initialize Motion



Sequential / Incremental SfM

3. Extend Motion

2. Initialize Structure

4. Extend Structure

1. Initialize Motion

• Two view reconstruction

• Epipolar geometry

• Fundamental matrix F

• Essential matrix E

• Computing F and E



Epipolar Geometry

 

R
 

t



• Algebraic representation of epipolar geometry

• 3x3 Matrix

• Maps points to epipolar lines

• Epipolar constraint

The Fundamental Matrix F



Fundamental matrix encodes relative pose

The Fundamental Matrix F

 

t



F is the unique 3x3 rank 2 matrix 
that satisfies x’TFx=0 for all x↔x’

• Transpose: if F is fundamental matrix for (I,I’), then 
FT is fundamental matrix for (I’,I)

• Epipolar lines: l’=Fx & l=FTx’

• Epipoles: on all epipolar lines, thus e’TFx=0, x 
e’TF=0, similarly Fe=0

• Rank 2: epipoles in nullspace!
• F has 7 degree of freedom (DOF),                              

i.e. 3x3 -1(homogeneous) -1(rank 2)

Properties of F



The Essential Matrix E

• Calibrated case:

 

R,t

 

X



E is an essential matrix iff two of its singular 
values are equal, third is 0

Properties of E

• Relationship to F?

• Inherits F’s properties (see previous slide)



Degree of Freedom of 

 

X
 

X?

t



Computation of F & E

• Linear (8-point) (F & E)

• Minimal (7-point) (F & E)

• Calibrated (5-point) (only E)



• Basic epipolar equation:
• Expand:

• Separate known and unknown variables:

• Write as linear equation:

• 8 unknowns (up to scale): Use 8 points
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Linear Solution (8-point)
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! Orders of magnitude difference

between column of data matrix

→ least-squares yields poor results

Normalized 8-point Algorithm

• Normalize point coordinates prior to computing F

• Same as for the normalized DLT algorithm for 
homography estimation (see lecture 2)



The Singularity Constraint



The Singularity Constraint
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The Singularity Constraint



• Setup linear system from 7 correspondences:

• Resulting solution has 2D solution space

• F is linear combination of V8 and V9:

• … but F1+λF2 not automatically rank 2
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Minimal Case:
7 Point Correspondences



• Enforce rank-2 constraint from determinant:

• Cubic equation in λ
• Either 1 or 3 solutions
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Minimal Case: 7 Point Correspondences



• Linear equations from 5 points

• 4D linear solution space:

• Insert into non-linear constraints
detE = 0

10 cubic polynomials

E = xX + yY + zZ + wW w = 1scale does not matter, choose
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(assumes normalized coordinates)

Calibrated Case: 5-point Solver
D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003



• Perform Gauss-Jordan elimination on 
polynomials

-z

-z

-z

[n] represents polynomial of degree n in z

Calibrated Case: 5-point Solver
D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003



Step 1. Extract features

Step 2. Compute a set of potential matches

Step 3. Robust estimation of F via RANSAC

Step 4. Compute F based on all inliers

Step 5. Look for additional matches

Step 6. Refine F based on all correct matches

Automatic Computation of F



RANdom SAmple Consensus (RANSAC)
M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 

Applications to Image Analysis and Automated Cartography, CACM 1981



RANdom SAmple Consensus (RANSAC)
M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 

Applications to Image Analysis and Automated Cartography, CACM 1981



RANdom SAmple Consensus (RANSAC)
M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 

Applications to Image Analysis and Automated Cartography, CACM 1981



• Problem: Estimate F in presence of wrong matches

• RANSAC algorithm:

• Repeat:

• Randomly select minimal sample (5 or 7 points)

• Compute hypothesis for F from minimal sample

• Verify hypothesis: Count inliers

• Update best solution found so far

• Until prob. of not having sampled all-inlier set< η

RANdom SAmple Consensus (RANSAC)
M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 

Applications to Image Analysis and Automated Cartography, CACM 1981

% inliers 90% 80% 70% 60% 50% 20%

#samples (5) 5 12 25 57 145 14k

#samples (7) 7 20 54 162 587 359k

η=0.01% 



• Restricted search around epipolar line 
(e.g. 1.5 pixels)

Finding More Matches



Summary: Epipolar Geometry

http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/


Sequential / Incremental SfM

3. Extend Motion

2. Initialize Structure

4. Extend Structure

1. Initialize Motion

• Initialize motion from F or E

• Triangulate structure from motion



• Recap Essential matrix: E=[t]xR

• Motion for two cameras: [I|0], [R|t]

• Essential Matrix decomposition: E=UΣVT

• Recover R and t as

• t=u3 or t=-u3

• R=UWVT or R=UWTVT

• Four solutions, but only one meaningful

Initial Motion and Structure Estimation 
(Calibrated Case)

(see Hartley and Zisserman, Sec.9.6)



Using the Cheirality Constraint

(see Hartley and Zisserman, Sec. 9.6)



• Given: Motion, correspondence

• Estimate 3D point via triangulation

Triangulation

C1
x1

L1

x2

L2

X

C2



Triangulation

• Backprojection

• Triangulation

• Maximum Likelihood Triangulation (geometric error)



Optimal 3D Point in Epipolar Plane

• Given an epipolar plane, find best 3D point for (m1,m2)

m1

m2

l1 l2

l1
m1

m2
l2

m1´

m2´

• Select closest points (m1´,m2´) on epipolar lines

• Obtain 3D point through exact triangulation

• Guarantees minimal reprojection error (given this epipolar 
plane)



• Non-iterative method:

• Determine optimal epipolar plane for 
reconstruction

• Reconstruct optimal point from selected epipolar 
plane

• Note: Only works for two views

Optimal Two-View Triangulation

(Hartley and Sturm, CVIU´97)

 

D m1,l1 ( )( )
2

+ D m2,l2 ( )( )
2

(polynomial of degree 6)

m1

m2

l1() l2()
1DOF



Sequential / Incremental SfM

3. Extend Motion

2. Initialize Structure

4. Extend Structure

1. Initialize Motion

• Find camera with matches to 
previous images

• Matches define 2D-3D 
correspondences

• Estimate camera pose wrt. 3D 
structure



• Compute Pi+1 using robust approach (6-point RANSAC)

• Extend and refine reconstruction

2D-2D

2D-3D 2D-3D

mi
mi+1

M

new view

Pose Estimation from 2D-3D Matches



Compute P with 6-point RANSAC

• Generate hypothesis using 6 points

• Planar scenes are degenerate!

(similar DLT algorithm as see in 2nd lecture for 
homographies)

(two equations per point)



All techniques yield 4th order 
polynomial

`

19811841

3-Point-Perspective Pose – P3P 
(Calibrated Case)

R. Haralick, D. Lee, K. Ottenburg, M. Nolle. Review and analysis of solutions of the three 

point perspective pose estimation problem, CVPR 1991 

Camera coord. system

World coord. system



Incremental SfM

• Initialize:

• Compute pairwise epipolar geometry

• Find pair to initialize structure and motion

• Repeat:

• For each additional view

• Determine pose from structure

• Extend structure

• Refine structure and motion (bundle adjustment, 
see lecture 7)



Global SfM

• Initialize:

• Compute pairwise epipolar geometry

• Compute:

• Estimate all orientations

• Estimate all positions

• Triangulate structure

• Refine structure and motion (bundle 
adjustment)

• Pros: More efficient, more accurate

• Con: Less robust



SfM Software

• Colmap (Johannes Schönberger)

• Incremental SfM, very efficient, nice GUI, 
open source

• VisualSFM (Changchang Wu)

• Incremental SfM, very efficient, GUI, binaries

• Bundler (Noah Snavely)

• Incremental SfM, open source

• OpenMVG (Pierre Moulon)

• Incremental and Global SfM, open source

• Theia (Chris Sweeney)

• Incremental and Global SfM, very efficient,
open source

http://colmap.github.io/
http://ccwu.me/vsfm/
https://github.com/snavely/bundler_sfm
https://github.com/openMVG/openMVG
http://www.theia-sfm.org/


Summary

• Estimate motion between two images

• Epipolar geometry

• Estimate structure from motion

• Triangulation

• Estimate camera pose from structure

• Absolute camera pose solvers

• DLT 6-point solver (P6P)

• 3-point-perspective pose solver (P3P)



Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration 

Mar 4 Guest lecture + Features, Tracking / Matching

Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday

Schedule



Next week: 
Dense Correspondence / Stereo

Now:
Paper presentations!


