3D Vision

Marc Pollefeys
Daniel Barath

Spring 2024

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment \& SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo \& Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers
May 20	Holiday

3D Vision - Class 4

Structure-from-Motion

Chapter 7 in Szeliski's Book Chapter 9 in Hartley \& Zisserman (online)
Tutorial chapters 3.2 and 4

Last Lecture: Local Features

Features are key component of many 3D Vision algorithms

Today: Structure-from-Motion (SfM)

Rome dataset

74,394 images

Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-Motion revisited, CVPR 2016

Topics Today

- Estimate motion between two images
- Epipolar geometry
- Two view Structure-from-Motion
- Estimate structure from motion
- Triangulation
- Estimate camera pose from structure
- Absolute camera pose solvers

Sequential / Incremental SfM

1. Initialize Motion

2. Initialize Structure

Sequential / Incremental SfM

- Two view reconstruction
- Epipolar geometry
- Fundamental matrix F
- Essential matrix E
- Computing F and E

2. Initialize Structure

Epipolar Geometry

The Fundamental Matrix F

- Algebraic representation of epipolar geometry
- 3x3 Matrix
- Maps points to epipolar lines

$$
\ell^{\prime}=F \boldsymbol{x} \quad \ell=F^{T} \boldsymbol{x}^{\prime}
$$

- Epipolar constraint $\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0$

EIH

The Fundamental Matrix F

Fundamental matrix encodes relative pose

$$
F \quad \Leftrightarrow^{*} \quad \begin{aligned}
& P_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
& P_{2}=\left[\begin{array}{ll}
A & \boldsymbol{t}
\end{array}\right]
\end{aligned}
$$

*up to a projective coordinate change! ЕТН

Properties of \mathbf{F}

\mathbf{F} is the unique 3×3 rank 2 matrix that satisfies $\mathrm{x}^{\top}{ }^{\top} \mathbf{F x}=0$ for all $\mathrm{x} \leftrightarrow \mathrm{x}^{\prime}$

- Transpose: if \mathbf{F} is fundamental matrix for (I, I '), then \mathbf{F}^{\top} is fundamental matrix for ($\left.\mathrm{I}^{\prime}, \mathrm{I}\right)$
- Epipolar lines: $I^{\prime}=\mathbf{F x}$ \& $I=\mathbf{F}^{\top} \mathrm{x}^{\prime}$
- Epipoles: on all epipolar lines, thus e'T $\mathrm{Fx}=0, \forall \mathrm{x}$ $\Rightarrow e^{\top} \mathbf{T}=0$, similarly $\mathbf{F e}=0$
- Rank 2: epipoles in nullspace!
- \mathbf{F} has 7 degree of freedom (DOF), i.e. $3 \times 3-1$ (homogeneous) -1(rank 2)

The Essential Matrix E

- Calibrated case: $P_{1}=\mathbb{X}_{1}[I 0], P_{2}=\mathbb{Z}[R \boldsymbol{t}]$

$$
\lambda_{1} \hat{x}_{1}=X
$$

$$
\begin{aligned}
& \lambda_{2} \hat{x}_{2}=\lambda_{1} R \hat{x}_{1}+\boldsymbol{t} \\
& \left([t)_{x_{2}}^{T} \hat{x}_{\hat{t}}\right)_{\times}^{T} \boldsymbol{R} \hat{\boldsymbol{x}}_{1}=(0) \\
& {\left[t_{\times}=\left[\begin{array}{ccc}
0 & -t_{3} & t_{2} \\
t_{3} & t_{2} & -t_{1} \\
-t_{2} & t_{1} & 0
\end{array}\right]\right.} \\
& \boldsymbol{t} \times \hat{x}_{2}=[\boldsymbol{t}]_{\times} \hat{x}_{2}
\end{aligned}
$$

Properties of \mathbf{E}

\mathbf{E} is an essential matrix iff two of its singular values are equal, third is 0

- Relationship to \mathbf{F} ?

$$
x_{2}^{T} F x_{1}=0 \quad \hat{x}_{2}^{T} E \hat{x}_{1}=0 \quad \hat{x}_{i}=K_{i}^{-1} x_{i}
$$

$$
x_{2}^{T} \underbrace{K_{2}^{-T} E K_{1}^{-1}}_{F} x_{1}=0
$$

- Inherits F's properties (see previous slide)

Degree of Freedom of $E=[t]_{\times} R$

ETH

Computation of \mathbf{F} \& E

- Linear (8-point) ($\mathbf{F} \& \mathbf{E}$)
- Minimal (7-point) ($\mathbf{F} \& \mathbf{E}$)
- Calibrated (5-point) (only E)

Linear Solution (8-point)

- Basic epipolar equation: $x^{T T} \mathrm{Fx}=0$
- Expand:
$x^{\prime} x f_{11}+x^{\prime} y f_{12}+x^{\prime} f_{13}+y^{\prime} x f_{21}+y^{\prime} y f_{22}+y^{\prime} f_{23}+x f_{31}+y f_{32}+f_{33}=0$
- Separate known and unknown variables:
$\left[x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right]\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right]^{\mathrm{T}}=0$
(data) (unknowns)
- Write as linear equation:
$\left[\begin{array}{ccccccccc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x_{n}^{\prime} x_{n} & x_{n}^{\prime} y_{n} & x_{n}^{\prime} & y_{n}^{\prime} x_{n} & y_{n}^{\prime} y_{n} & y_{n}^{\prime} & x_{n} & y_{n} & 1\end{array}\right] \mathrm{f}=0$
- 8 unknowns (up to scale): Use 8 points

Normalized 8-point Algorithm

between column of data matrix
\rightarrow least-squares yields poor results

- Normalize point coordinates prior to computing F
- Same as for the normalized DLT algorithm for homography estimation (see lecture 2)

The Singularity Constraint

The Singularity Constraint

$$
\mathrm{e}^{\mathrm{T}} \mathrm{~F}=0 \quad \mathrm{Fe}=0 \quad \operatorname{det} \mathrm{~F}=0 \quad \operatorname{rank} \mathrm{~F}=2
$$

- SVD from linearly computed F matrix (rank 3):

$$
\mathrm{F}=\mathrm{U}\left[\begin{array}{lll}
\sigma_{1} & & \\
& \sigma_{2} & \\
& & \sigma_{3}
\end{array}\right] \mathrm{V}^{\mathrm{T}}=\mathrm{U}_{1} \sigma_{1} \mathrm{~V}_{1}^{\mathrm{T}}+\mathrm{U}_{2} \sigma_{2} \mathrm{~V}_{2}^{\mathrm{T}}+\mathrm{U}_{3} \sigma_{3} \mathrm{~V}_{3}^{\mathrm{T}}
$$

- Compute closest rank-2 approximation: $\min \|\mathrm{F}-\mathrm{F}\|_{F}$

$$
\mathrm{F}^{\prime}=\mathrm{U}\left[\begin{array}{lll}
\sigma_{1} & & \\
& \sigma_{2} & \\
& & 0
\end{array}\right] \mathrm{V}^{\mathrm{T}}=\mathrm{U}_{1} \sigma_{1} \mathrm{~V}_{1}^{\mathrm{T}}+\mathrm{U}_{2} \sigma_{2} \mathrm{~V}_{2}^{\mathrm{T}}
$$

The Singularity Constraint

Minimal Case: 7 Point Correspondences

- Setup linear system from 7 correspondences:

$$
\left[\begin{array}{ccccccccc}
x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\
\vdots & \vdots \\
x_{7}^{\prime} x_{7} & x_{7}^{\prime} y_{7} & x_{7}^{\prime} & y_{7}^{\prime} x_{7} & y_{7}^{\prime} y_{7} & y_{7}^{\prime} & x_{7} & y_{7} & 1
\end{array}\right] \mathrm{f}=0
$$

- Resulting solution has 2D solution space
$\mathrm{A}=\mathrm{U}_{7 \times 7} \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{7}, 0,0\right) \mathrm{V}_{9 \times 9}{ }^{\mathrm{T}} \Rightarrow \mathrm{A}\left[\mathrm{V}_{8} \mathrm{~V}_{9}\right]=0_{9 \times 2}$
- F is linear combination of \mathbf{V}_{8} and \mathbf{V}_{9} :

$$
\mathrm{x}_{i}^{\mathrm{T}}\left(\mathrm{~F}_{1}+\lambda \mathrm{F}_{2}\right) \mathrm{x}_{i}=0, \forall i=1 \ldots 7
$$

- ... but $F_{1}+\lambda F_{2}$ not automatically rank 2

Minimal Case: 7 Point Correspondences

- Enforce rank-2 constraint from determinant:

$$
\operatorname{det}\left(\mathrm{F}_{1}+\lambda \mathrm{F}_{2}\right)=a_{3} \lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0
$$

- Cubic equation in λ
- Either 1 or 3 solutions

Calibrated Case: 5-point Solver

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003

- Linear equations from 5 points

$$
E=x X+y Y+z Z+w W \text { scale does not matter, choose } w=1
$$

- Insert into non-linear constraints
$\operatorname{det} E=0$
$2 \mathbf{E E}^{T} \mathbf{E}-\operatorname{tr}\left(\mathbf{E E}^{T}\right) \mathbf{E}=0$. $\quad 10$ cubic polynomials

Calibrated Case: 5-point Solver

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003

- Perform Gauss-Jordan elimination on polynomials
[n] represents polynomial of degree n in z

A	x^{3}	y^{3}	$x^{2} y$	$x y^{2}$	$x^{2} z$	x^{2}	$y^{2} z$	y^{2}	$x y z$	$x y$	x	y	1
$\langle a\rangle$	1	[2]	[2]	[3]
$\langle b\rangle$		1	-	[2]	[2]	[3]
$\langle c\rangle$			1	[2]	[2]	[3]
$\langle d\rangle$				1	-	[2]	[2]	[3]
(k) \cdot - $\langle e\rangle$					1						[2]	[2]	[3]
$\langle k\rangle[-z\langle f\rangle$						1					[2]	[2]	[3]
$\langle l\rangle .-\langle g\rangle$							1				[2]	[2]	[3]
$\left)^{-2}-\mathrm{z}\langle h\rangle\right.$								1			[2]	[2]	[3]
$\langle m\rangle .\langle i\rangle$									1		[2]	[2]	[3]
(m) $[-z\langle j\rangle$										1	[2]	[2]	[3]

$$
\begin{aligned}
\langle k\rangle & \equiv\langle e\rangle-z\langle f\rangle \\
\langle l\rangle & \equiv\langle g\rangle-z\langle h\rangle \\
\langle m\rangle & \equiv\langle i\rangle-z\langle j\rangle
\end{aligned}
$$

B	x	y	1
$\langle k\rangle$	$[3]$	$[3]$	$[4]$
$\langle l\rangle$	$[3]$	$[3]$	$[4]$
$\langle m\rangle$	$[3]$	$[3]$	$[4]$

$$
\langle n\rangle \equiv \operatorname{det}(B)
$$

Automatic Computation of F

Step 1. Extract features
Step 2. Compute a set of potential matches
Step 3. Robust estimation of \mathbf{F} via RANSAC
Step 4. Compute F based on all inliers
Step 5. Look for additional matches
Step 6. Refine F based on all correct matches

RANdom SAmple Consensus (RANSAC)

M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

RANdom SAmple Consensus (RANSAC)

M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

RANdom SAmple Consensus (RANSAC)

M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

RANdom SAmple Consensus (RANSAC)

M. A.. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, CACM 1981

- Problem: Estimate F in presence of wrong matches
- RANSAC algorithm:
- Repeat:
- Randomly select minimal sample (5 or 7 points)
- Compute hypothesis for F from minimal sample
- Verify hypothesis: Count inliers
- Update best solution found so far
- Until prob. of not having sampled all-inlier set< η

$\%$ inliers	90%	80%	70%	60%	50%	20%
\#samples (5)	5	12	25	57	145	14 k
\#samples (7)	7	20	54	162	587	359 k

$$
\eta=0.01 \%
$$

Finding More Matches

- Restricted search around epipolar line (e.g. ± 1.5 pixels)

Summary: Epipolar Geometry

Sequential / Incremental SfM

- Initialize motion from \mathbf{F} or \mathbf{E}
- Triangulate structure from motion

1. Initialize Motion

2. Initialize Structure
3. Extend Motion

Initial Motion and Structure Estimation (Calibrated Case)

- Recap Essential matrix: $\mathbf{E}=[\mathbf{t}]_{x} \mathbf{R}$
- Motion for two cameras: [I|0], [R|t]
- Essential Matrix decomposition: $\mathbf{E}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$

$$
\boldsymbol{\Sigma}=\left(\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 0
\end{array}\right) \mathbf{W}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{W}^{-1}=\mathbf{W}^{T}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Recover \mathbf{R} and \mathbf{t} as
- $\mathbf{t}=\mathbf{u}_{3}$ or $\mathbf{t}=-\mathbf{u}_{3}$
- $\mathbf{R}=\mathbf{U W V}{ }^{\top}$ or $\mathbf{R}=\mathbf{U W}^{\top} \mathbf{V}^{\top}$
- Four solutions, but only one meaningful

Using the Cheirality Constraint

(d)
(see Hartley and Zisserman, Sec. 9.6)

Triangulation

- Given: Motion, correspondence
- Estimate 3D point via triangulation

EHH

Triangulation

- Backprojection

$$
\begin{gathered}
\lambda \mathrm{x}=\mathrm{PX} \\
\mathrm{P}_{3} \mathrm{X} x=\mathrm{P}_{1} \mathrm{X} \\
\mathrm{P}_{3} \mathrm{X} y=\mathrm{P}_{2} \mathrm{X}
\end{gathered} \quad\left[\begin{array}{c}
\lambda y \\
\lambda
\end{array}\right]^{2}=\left[\begin{array}{l}
\mathrm{P}_{2} \\
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3} y-\mathrm{P}_{2}
\end{array}\right]^{\mathrm{X}}=\mathrm{X}=0
$$

- Triangulation

$$
\left[\begin{array}{l}
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3} y-\mathrm{P}_{2} \\
\mathrm{P}_{3}^{\prime} x^{\prime}-\mathrm{P}_{1}^{\prime} \\
\mathrm{P}_{3}^{\prime} y^{\prime}-\mathrm{P}_{2}^{\prime}
\end{array}\right] \mathrm{X}=0
$$

- Maximum Likelihood Triangulation (geometric error)

$$
\arg \min _{X} \sum_{i}\left(x_{i}-\lambda^{-1} \mathbf{P}_{i} \mathrm{X}\right)^{2}
$$

ETH

Optimal 3D Point in Epipolar Plane

- Given an epipolar plane, find best 3D point for $\left(m_{1}, m_{2}\right)$

- Select closest points ($m_{1}{ }^{\prime}, m_{2}{ }^{\prime}$) on epipolar lines
- Obtain 3D point through exact triangulation
- Guarantees minimal reprojection error (given this epipolar plane)

Optimal Two-View Triangulation

- Non-iterative method: (Hartley and Sturm, CVIU'97)
- Determine optimal epipolar plane for reconstruction

1DOF

$$
D\left(\mathbf{m}_{1}, \mathbf{l}_{1}(\alpha)\right)^{2}+D\left(\mathbf{m}_{2}, \mathbf{l}_{2}(\alpha)\right)^{2} \text { (polynomial of degree 6) }
$$

- Reconstruct optimal point from selected epipolar plane
- Note: Only works for two views

Sequential / Incremental SfM

- Find camera with matches to previous images
- Matches define 2D-3D correspondences
- Estimate camera pose wrt. 3D structure

2. Initialize Structure

Pose Estimation from 2D-3D Matches

- Compute \mathbf{P}_{i+1} using robust approach (6-point RANSAC)
- Extend and refine reconstruction

Compute P with 6-point RANSAC

- Generate hypothesis using 6 points

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\
w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)=\mathbf{0}} \\
& \text { (two equations per point) }
\end{aligned}
$$

- Planar scenes are degenerate!
(similar DLT algorithm as see in $2^{\text {nd }}$ lecture for homographies)

3-Point-Perspective Pose - P3P (Calibrated Case)

Camera coord. system

All techniques yield $4^{\text {th }}$ order polynomial

Fig. 2. Shows the differences of a algebraic derivations among six solution techniques,

Incremental SfM

- Initialize:

- Compute pairwise epipolar geometry
- Find pair to initialize structure and motion
- Repeat:
- For each additional view
- Determine pose from structure
- Extend structure
- Refine structure and motion (bundle adjustment, see lecture 7)

Global SfM

- Initialize:
- Compute pairwise epipolar geometry
- Compute:
- Estimate all orientations
- Estimate all positions
- Triangulate structure
- Refine structure and motion (bundle adjustment)
- Pros: More efficient, more accurate
- Con: Less robust

SfM Software

- Colmap (Johannes Schönberger)
- Incremental SfM, very efficient, nice GUI, open source
- VisualSFM (Changchang Wu)
- Incremental SfM, very efficient, GUI, binaries
- Bundler (Noah Snavely)
- Incremental SfM, open source
- OpenMVG (Pierre Moulon)
- Incremental and Global SfM, open source
- Theia (Chris Sweeney)
- Incremental and Global SfM, very efficient, open source

Summary

- Estimate motion between two images
- Epipolar geometry
- Estimate structure from motion
- Triangulation
- Estimate camera pose from structure
- Absolute camera pose solvers
- DLT 6-point solver (P6P)
- 3-point-perspective pose solver (P3P)

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment \& SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo \& Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers
May 20	Holiday

Next week:
 Dense Correspondence / Stereo

Now:
Paper presentations!

