

3D Vision: Stereo

Marc Pollefeys Daniel Barath

Spring 2024

http://cvg.ethz.ch/teaching/3dvision/

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment & SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo & Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers

Dense Correspondence & Stereo Matching

Dense Correspondence & Stereo Matching

Tsukuba dataset

http://cat.middlebury.edu/stereo/

Relationship Disparity - Depth

How to recover a 3D point from two corresponding image points?

- Equal triangles (only when image planes are parallel)
- Using the definition d = x x':

$$\frac{Z - f}{B - (x - x')} = \frac{Z}{B}$$
$$ZB - fB = ZB - Z(x - x')$$
$$Z = \frac{fB}{x - x'} = \frac{fB}{d}$$
$$d = \frac{fB}{Z}$$

Ζ

Overview

Task

Construct a 3D model from 2 images of a calibrated camera

Pipeline:

- 1. Find a set of corresponding points
- 2. Estimate the epipolar geometry
- 3. Rectify both images
- 4. Dense feature matching
- 5. 3D reconstruction

Disparity map

image I(x,y)

Disparity map D(x,y)

image l´(x´,y´)

(x',y')=(x+D(x,y),y)

Photoconsistency

disparity

Photoconsistency

- w_L and w_R are corresponding $m \times m$ windows of pixels
- We can write them as vectors: $\mathbf{w}_L, \mathbf{w}_R \in \mathbb{R}^{m^2}$
- Normalized correlation (cosine of the enclosed angle):

$$\mathsf{NC}(x, y, d) = \frac{(\mathbf{w}_L(x, y) - \bar{\mathbf{w}}_L(x, y))^T (\mathbf{w}_R(x - d, y) - \bar{\mathbf{w}}_R(x - d, y))}{\|\mathbf{w}_L(x, y) - \bar{\mathbf{w}}_L(x, y)\|_2 \|\mathbf{w}_R(x - d, y) - \bar{\mathbf{w}}_R(x - d, y)\|_2}$$

Sum of squared differences (SSD):

$$\mathsf{SSD}(x,y,d) = \|\mathbf{w}_L(x,y) - \mathbf{w}_R(x-d,y)\|_2^2$$

Photoconsistency

Block Matching:

m=3

m = 20

- ► Choose some disparity range [0, *d_{max}*]
- For all pixels x = (x, y) try all disparities and choose the one that maximizes the normalized correlation or minimizes the SSD
- ► This strategy is called: Winner-takes-all (WTA)
- Do this for both images, apply left-right consistency check Challenges:
 - Which window size to choose? Tradeoff: Ambiguity \leftrightarrow Bleeding!
 - Block matching = fronto-parallel assumption (often invalid!)

Hierarchical stereo matching

Allows faster computation

Deals with large disparity ranges

Disparity propagation

Downsampling (Gaussian pyramid

Stereo camera configurations

Poor precision

Better precision

Occlusions

Uniqueness constraint

- In an image pair each pixel has at most one corresponding pixel
 - In general one corresponding pixel
 - In case of occlusion there is none

Disparity constraint

use reconstructed features to determine bounding box

ETH

Ordering constraint

Stereo matching

Constraints

- epipolar
- ordering
- uniqueness

disparity limit

Trade-off

- Matching cost (data)
- Discontinuities (prior)

Consider all paths that satisfy the constraints pick best using dynamic programming

True disparities

*2 – Dynamic progr.

16 - Fast Correlation

(Scharstein & Szeliski, IJCV'02)

Energy minimization

1. Matching pixels should have similar intensities.

- 2. Most nearby pixels should have similar disparities
- → Minimize $\sum [I_1(x+D(x,y),y)-I_2(x,y)]^2 + \lambda \sum [D(x+1,y)-D(x,y)]^2 + \mu \sum [D(x,y+1)-D(x,y)]^2$

- 1. Stereo is a labeling problem
- 2. Graph cut corresponds to a labeling.
- → Assign edge weights cleverly so that the min-weight cut gives the minimum energy!

Simplified graph cut

(a) initial labeling

(b) standard move

(Boykov et al ICCV'99)

(d) α -expansion

True disparities

11 - GC + occlusions

*2 – Dynamic progr.

16 - Fast Correlation

(Scharstein & Szeliski, IJCV'02)

Semi-global optimization

- Optimize:
 - $E = E_{data} + E(|D_p D_q| = 1) + E(|D_p D_q| > 1)$
 - Use mutual information as cost
 - [Hirschmüller CVPR05]
- NP-hard using graph cuts or belief propagation (2-D optimization)
- Instead do dynamic programming along many directions
 - Don't use visibility or ordering constraints
 - Add costs of all paths

More Complex Priors

(Güney & Geiger, CVPR 2015)

Stereo matching with general camera configurations

Image pair rectification

- Lets assume the camera parameters and geometry is known!
- Given a projection of a 3D point in the left image
- ► Where is it located in 3D?
- On the epipolar line defined by this point and the camera centers
- Reduces the search problem to 1D!

Epipolar Geometry

~ /

► **CC**': Baseline (translation between cameras)

- ▶ **e**, **e**': Epipole (intersection of image plane with baseline)
- ► I, I': Epipolar line (intersection of image plane with epipolar plane)

Planar rectification

(not possible when in/close to image)

Planar rectification

Source: <u>https://en.wikipedia.org/wiki/Image_rectification</u>

Polar rectification (Pollefeys et al. ICCV' 99)

- Polar re-parameterization around epipoles
- Requires only (oriented) epipolar geometry
- Preserve length of epipolar lines
- Choose $\Delta \theta$ so that no pixels are compressed

Works for all relative motions Guarantees minimal image size

original image pair

planar rectification

polar rectification

ETH

Example: Béguinage of Leuven

Does not work with standard Homography-based approaches

Plane-sweep multi-view matching

- Simple algorithm for multiple cameras
- no rectification necessary
- doesn't deal with occlusions
 Collins' 96; Roy and Cox' 98 (GC)

PatchMatch Stereo

fronto-parallel windows vs. slanted support windows

(Bleyer et al. BMVC'11)

PatchMatch Stereo (Bleyer et al. BMVC' 11)

• For a particular plane the disparity at a pixel is given by

$$d_p = a_{f_p} p_x + b_{f_p} p_y + c_{f_p}$$

The plane with the minimal cost is chosen

$$f_p = \underset{f \in \mathscr{F}}{\operatorname{argmin}} m(p, f)$$

The dissimilarity cost is calculated as

 $m(p,f) = \sum_{q \in W_p} w(p,q) \cdot \rho(q,q - (a_f q_x + b_f q_y + c_f))$

with
$$w(p,q) = e^{-\frac{||I_p - I_q||}{\gamma}}$$

 $\rho(q,q') = (1-\alpha) \cdot \min(||I_q - I_{q'}||, \tau_{col}) + \alpha \cdot \min(||\nabla I_q - \nabla I_{q'}||, \tau_{grad})$

PatchMatch Stereo (Bleyer et al. BMVC' 11)

Idea: Start with a random initialization of disparities and plane parameters for each pixel and update the estimates by propagating information from the neighboring pixels

- Spatial propagation: Check for each pixel the disparities and plane parameters for the left and upper (right and lower) neighbors and replace the current estimates if matching costs are smaller
- *View propagation*: Warp the point in the other view and check the corresponding estimates in the other image. Replace if the matching costs are lower.
- Temporal propagation: Propagate the information analogously by considering the estimates for the same pixel at the preceding and consecutive video frame

PatchMatch Stereo (Bleyer et al. BMVC' 11)

PatchMatch Stereo

Left to right:

- Fronto-parallel, discrete disparities
- Fronto-parallel, continuous disparities
- PatchMatch Stereo (slanted, continuous disparities)

(Bleyer et al. BMVC'11)

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment & SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo & Volumetric Modeling + papers
Apr 29 May 6	Multi-View Stereo & Volumetric Modeling + papers 3D Modeling with Depth Sensors + papers
Apr 29 May 6 May 13	Multi-View Stereo & Volumetric Modeling + papers 3D Modeling with Depth Sensors + papers Guest lecture + papers

Next week: Bundle Adjustment & SLAM

Now: Papers!

