3D Vision

Marc Pollefeys, Daniel Barath

Spring 2024

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment \& SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo \& Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers
May 20	Holiday

3D Vision - Class 6 Bundle Adjustment and SLAM

- [Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle Adjustment - A Modern Synthesis, Int. Workshop on Vision Algorithms, 1999]
- [Montemerio, Thrun, Koller, Wegbreit, FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, AAAI 2002]
- Section 2.5 from [Lee, Visual Mapping and Pose Estimation for Self-Driving Cars, PhD Thesis, ETH Zurich, 2014]

Lecture Overview

- Bundle Adjustment in Structure-fromMotion
- Simultaneous Localization \& Mapping (SLAM)

Recap: Structure-From-Motion

- Two views initialization:
-5-Point algorithm (Minimal Solver)
- 8-Point linear algorithm
- 7-Point algorithm

Recap: Structure-From-Motion

- Triangulation: 3D Points

ETH

Recap: Structure-From-Motion

- Subsequent views: Perspective pose estimation

Recap: Structure-From-Motion

Bundle Adjustment

- Refinement step in Structure-from-Motion.
- Refine a visual reconstruction to produce jointly optimal 3D structures P and camera poses C.
- Minimize total re-projection errors Δz.

Cost Function:

$$
\begin{aligned}
& \underset{x}{\operatorname{argmin}} \sum_{i} \sum_{j}\|\underbrace{\| x_{i j}-\pi\left(P_{j}, C_{i}\right)}_{\Delta z_{i j}}\|_{w_{i j}}^{2} \\
& X=[P, C]
\end{aligned}
$$

Bundle Adjustment

- Refinement step in Structure-from-Motion.
- Refine a visual reconstruction to produce jointly optimal 3D structures P and camera poses C.
- Minimize total re-projection errors Δz.

Cost Function:

$W_{i j}^{-1}:$ Measurement error covariance
$X=[P, C]$

Bundle Adjustment

- Minimize the cost function: $\operatorname{argmin} f(X)$

1. Gradient Descent
2. Newton Method
3. Gauss-Newton
4. Levenberg-Marquardt

Bundle Adjustment

1. Gradient Descent

Initialization: $X_{k}=X_{0}$

Slow convergence near minimum point!

Bundle Adjustment

2. Newton Method

$2^{\text {nd }}$ order approximation (Quadratic Taylor Expansion):

$$
\left.f(X+\delta)\right|_{X=X_{K}} \approx f(X)+g \delta+\left.\frac{1}{2} \delta^{T} H \delta\right|_{X=X_{K}}
$$

$$
\text { Hessian matrix : } H=\left.\frac{\partial^{2} f(X+\delta)}{\partial \delta^{2}}\right|_{X=X_{k}}
$$

Find δ that minimizes $\left.f(X+\delta)\right|_{X=X_{K}}$!

Bundle Adjustment

2. Newton Method

Differentiate and set to 0 gives:

$$
\delta=-H^{-1} g
$$

Update: $\quad X_{k} \leftarrow X_{k}+\delta$

Computation of H is not trivial and might get stuck at saddle point!

Bundle Adjustment

3. Gauss-Newton

$$
\begin{gathered}
H=J^{T} W J+\sum_{i} \sum_{j} \Delta \bar{z}_{i j} W_{i j} \partial X^{2} \pi_{i j} \\
\downarrow \\
H \approx J^{T} W J
\end{gathered}
$$

Normal equation:

$$
J^{T} W J \delta=-J^{T} W \Delta Z
$$

Update: $\quad X_{k} \leftarrow X_{k}+\delta$
Might get stuck and slow convergence at saddle point!

Bundle Adjustment

4. Levenberg-Marquardt

Regularized Gauss-Newton with damping factor λ.

$$
\underbrace{\left(J^{T} W J+\lambda I\right)}_{H_{L M}} \delta=-J^{T} W \Delta Z
$$

$\lambda \rightarrow 0$: Gauss-Newton (when convergence is rapid)
$\lambda \rightarrow \infty$: Gradient descent (when convergence is slow) Adapt λ during optimization:

- Decrease λ when function value decreases
- Increase λ otherwise

Structure of the Jacobian and Hessian Matrices

- Sparse matrices since 3D structures are locally observed.

Efficiently Solving the Normal Equation

- Schur Complement: Exploit structure of H

Efficiently Solving the Normal Equation

- Schur Complement: Exploit structure of H

$$
\begin{aligned}
& H_{L M} \delta=-J^{T} W \Delta Z
\end{aligned}
$$

Efficiently Solving the Normal Equation

- Schur Complement: Obtain reduced system

$$
\begin{gathered}
H_{L M} \delta=-J^{T} W \Delta Z \\
{\left[\begin{array}{cc}
H_{S} & H_{S C} \\
H_{S C}^{T} & H_{C}
\end{array}\right]\left[\begin{array}{l}
\delta_{S} \\
\delta_{C}
\end{array}\right]=\left[\begin{array}{c}
\varepsilon_{S} \\
\varepsilon_{C}
\end{array}\right] \longleftarrow \text { 3D Structures }}
\end{gathered}
$$

Multiply both sides by: $\left[\begin{array}{cc}I & 0 \\ -H_{S C}^{T} H_{S}^{-1} & I\end{array}\right]$

$$
\left[\begin{array}{cc}
H_{S} & H_{S C} \\
0 & H_{C}-H_{S C}^{T} H_{S}^{-1} H_{S C}
\end{array}\right]\left[\begin{array}{l}
\delta_{S} \\
\delta_{C}
\end{array}\right]=\left[\begin{array}{c}
\varepsilon_{S} \\
\varepsilon_{C}-\varepsilon_{S} H_{S C}^{T} H_{S}^{-1}
\end{array}\right]
$$

Efficiently Solving the Normal Equation

- Schur Complement: Obtain reduced system

$$
\left[\begin{array}{cc}
H_{S} & H_{S C} \\
0 & H_{C}-H_{S C}^{T} H_{S}^{-1} H_{S C}
\end{array}\right]\left[\begin{array}{l}
\delta_{S} \\
\delta_{C}
\end{array}\right]=\left[\begin{array}{c}
\varepsilon_{S} \\
\varepsilon_{C}-\varepsilon_{S} H_{S C}^{T} H_{S}^{-1}
\end{array}\right]
$$

First solve for δ_{C} from:
Easy to invert a block diagonal matrix

$$
\underbrace{\text { (Sparse and Symmetric Positive Definite Matrix) }}_{\left.\begin{array}{c}
\text { Schur Complement } \\
H_{C}-H_{S C}^{T} H_{S}^{-1} H_{S C}
\end{array}\right) \delta_{C}=\varepsilon_{C}-\varepsilon_{S} H_{S C}^{T} H_{S}^{-1}}
$$

Solve for $\delta_{S C}$ by backward substitution.

Efficiently Solving the Normal Equation

$\left(H_{C}-H_{S C}^{T} H_{S}^{-1} H_{S C}\right) \delta_{C}=\varepsilon_{C}-\varepsilon_{S} H_{S C}^{T} H_{S}^{-1} \equiv A x=b$
Don't solve as $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$: A is sparse, but A^{-1} is not!

- Use sparse matrix factorization to solve system

1. LU Factorization $\longrightarrow A=L U \quad$ Solve for x by forward-
2. $Q R$ factorization $\longrightarrow A=Q R \quad$ backward substitutions
3. Cholesky Factorization $\longrightarrow A=L L^{T}$

- Iterative methods

1. Conjugate gradient
2. Gauss-Seidel

Robust Cost Function

- Non-linear least squares: $\underset{x}{\operatorname{argmin}} \sum_{i j} \Delta z_{i j}^{T} W_{i j} \Delta z_{i j}$
- Maximum log-likelihood solution:

$$
\underset{v}{\operatorname{argmin}-\ln p(Z \mid X)}
$$

- Assume that:

1. X is a random variable that follows Gaussian distribution.
2. All observations are independent.

$$
\begin{aligned}
\underset{X}{\operatorname{argmin}}-\ln p(X \mid Z) & =\underset{X}{\operatorname{argmin}}-\ln \left\{\prod_{i j} c_{i j} \exp \left(-\Delta z_{i j}^{T} W_{i j} \Delta z_{i j}\right)\right\} \\
& =\underset{X}{\operatorname{argmin}} \sum_{i j} \Delta z_{i j}^{T} W_{i j} \Delta z_{i j}
\end{aligned}
$$

Robust Cost Function

- Gaussian distribution assumption is not true in the presence of outliers!
- Causes wrong convergences.

Robust Cost Function

$$
\begin{gathered}
\underset{X}{\operatorname{argmin}} \sum_{i j} \rho_{i j}\left(\Delta z_{i j}\right) \equiv \underset{X}{\operatorname{argmin}} \sum_{i j} \Delta z_{i j}^{T} S_{i j} \Delta z_{i j} \\
\text { Robust Cost Function } \\
W_{i j} \text { scaled with } \rho_{i j}^{\prime \prime}
\end{gathered}
$$

- Similar to iteratively re-weighted least-squares.
- Weight is iteratively rescaled with the attenuating factor $\rho^{\prime \prime}{ }_{i j}$.
- Attenuating factor is computed based on current error.

Robust Cost Function

Robust Cost Function

Outliers are taken into account in Cauchy!

State-of-the-Art Solvers

- Google Ceres:
- https://code.google.com/p/ceres-solver/
- g2o:
- https://openslam.org/g2o.html
- GTSAM:
- https://collab.cc.gatech.edu/borg/gtsam/
- Multicore Bundle Adjustment
- http://grail.cs.washington.edu/projects/mcba/

Lecture Overview

- Bundle Adjustment in Structure-fromMotion
- Simultaneous Localization \& Mapping (SLAM)

Simultaneous Localization \& Mapping (SLAM)

- Robot navigates in unknown environment:
- Estimate its own pose
- Acquire a map model of its environment.
- Chicken-and-Egg problem:
- Map is needed for localization (pose estimation).
- Pose is needed for mapping.
- Highly related to Structure-From-Motion.

Full SLAM: Problem Definition

Full SLAM: Problem Definition

- Maximum a Posteriori (MAP) solution:

$$
\underset{X, L}{\operatorname{argmax}} p(X, L \mid Z, U)=\underset{X, L}{\operatorname{argmax}} p\left(X_{0}\right) \prod_{i=1}^{M} p\left(x_{i} \mid x_{i-1}, u_{i}\right) \prod_{k=1}^{K} p\left(z_{k} \mid x_{i k}, l_{j k}\right)
$$

Full SLAM

$\underset{X, L}{\operatorname{argmax}} p(X, L \mid Z, U)=\underset{X, L}{\operatorname{argmax}} p\left(X_{0}\right) \prod_{i=1}^{M} p\left(x_{i} \mid x_{i-1}, u_{i}\right) \prod_{k=1}^{K} p\left(z_{k} \mid x_{i k}, l_{j k}\right)$

$$
\begin{gathered}
\text { Negative log- } \\
\text { likelihood }
\end{gathered} \rightarrow=\underset{x, L}{\operatorname{argmin}}\left\{-\sum_{i=1}^{M} \ln p\left(x_{i} \mid x_{i-1}, u_{i}\right)-\sum_{k=1}^{K} \ln p\left(z_{k} \mid x_{i k}, l_{j k}\right)\right\}
$$

Likelihoods:

$$
p\left(x_{i} \mid x_{i-1}, u_{i}\right) \propto \exp \left\{-\left\|f\left(x_{i-1}, u\right)-x_{i}\right\|_{\Lambda_{i}}^{2}\right\}
$$

$$
p\left(z_{k} \mid x_{i k}, l_{j k}\right) \propto \exp \left\{-\left\|_{\uparrow} h\left(x_{i k}, l_{j k}\right)-z_{k}\right\|_{\Sigma_{k}}^{2}\right\}
$$

Full SLAM

$$
\underset{X, L}{\operatorname{argmax}} p(X, L \mid Z, U)=\underset{X, L}{\operatorname{argmin}}\left\{-\sum_{i=1}^{M} \ln p\left(x_{i} \mid x_{i-1}, u_{i}\right)-\sum_{k=1}^{K} \ln p\left(z_{k} \mid x_{i k}, l_{i k}\right)\right\}
$$

Putting the likelihoods into the equation:

$$
\underset{X, L}{\operatorname{argmax}} p(X, L \mid Z, U)=\underset{X, L}{\operatorname{argmin}}\left\{\sum_{i=1}^{M}\left\|f\left(x_{i-1}, u_{i}\right)-x_{i}\right\|_{\Lambda_{i}}^{2}+\sum_{k=1}^{K}\left\|h\left(x_{i k}, l_{i k}\right)-z_{k}\right\|_{\Sigma_{k}}^{2}\right\}
$$

Minimization can be done with LevenbergMarquardt (similar to bundle adjustment problem)!

Full SLAM

Normal Equations:

Weight made up of Λ_{i}, Σ_{k}

$$
\begin{aligned}
& \left(J^{T} W J+\lambda I\right) \delta=-J^{T} W \Delta Z \\
& \text { Jacobian made up of } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}, \frac{\partial h}{\partial x}, \frac{\partial h}{\partial l}
\end{aligned}
$$

Can be solved with sparse matrix factorization or iterative methods

Solving the full SLAM problem rather
expensive for larger scenes

Online SLAM: Problem Definition

- Estimate current pose x_{t} and full map L :

$$
p\left(x_{t}, L \mid Z, U\right)=\underbrace{\iint \ldots \int p(X, L \mid Z, U) d x_{1} d x_{2} \ldots d x_{t-1}}_{\text {Previous poses are marginalized out }}
$$

- Inference with:

1. (Extended) Kalman Filter (EKF SLAM)
2. Particle Filter (FastSLAM)

EKF SLAM

- Assumes: pose x_{t} and map L are random variables that follow Gaussian distributions.
- Hence,

$$
p\left(x_{t}, L \mid Z, U\right) \sim \mathrm{N}(\mu, \Sigma)
$$

- (Extended) Kalman Filter iteratively
- Predicts pose \& map based on process model
- Corrects prediction based on observations

EKF SLAM

Prediction:

$$
\begin{aligned}
& \bar{\mu}_{t}=f\left(u_{t}, \mu_{t-1}\right) \\
& \bar{\Sigma}_{t}=F_{t} \Sigma_{t-1} F_{t}^{T}+R_{t}
\end{aligned}
$$

$$
\longleftarrow \text { Process model }
$$

Error propagation with process noise

Correction:

$$
\begin{array}{ll}
y_{t} & =z_{t}-h\left(\bar{\mu}_{t}\right) \\
K_{t} & =\bar{\Sigma}_{t} H_{t}^{T}\left(H_{t} \bar{\Sigma}_{t} H_{t}^{T}+Q_{t}\right)^{-1} \longleftarrow \text { Measurement residual (innovation) } \\
\mu_{t} & =\bar{\mu}_{t}+K_{t} y_{t} \\
\Sigma_{t} & =\left(I-K_{t} H_{t}\right) \bar{\Sigma}_{t} \quad \longleftarrow \text { Kalman gain } \\
\text { Update mean }
\end{array}
$$

Measurement Jacobian $H_{t}=\frac{\partial h\left(\bar{\mu}_{t}\right)}{\partial x_{t}} \quad$ Process Jacobian $F_{t}=\frac{\partial f\left(u_{t}, \mu_{t-1}\right)}{\partial x_{t-1}}$

Structure of Mean and Covariance

$$
\mu_{t}=\left(\begin{array}{c}
x \\
y \\
\theta \\
l_{1} \\
l_{2} \\
\vdots \\
l_{N}
\end{array}\right), \Sigma_{t}=\left(\begin{array}{ccccccc}
\sigma_{x}^{2} & \sigma_{x y} & \sigma_{x \theta} & \sigma_{x l_{1}} & \sigma_{x l_{2}} & \cdots & \sigma_{x l_{N}} \\
\sigma_{x y} & \sigma_{y}^{2} & \sigma_{y \theta} & \sigma_{y l_{1}} & \sigma_{y l_{2}} & \cdots & \sigma_{y l_{N}} \\
\sigma_{x \theta} & \sigma_{y \theta} & \sigma_{\theta}^{2} & \sigma_{\theta l_{1}} & \sigma_{\theta l_{2}} & \cdots & \sigma_{\theta l_{N}} \\
\sigma_{x l_{1}} & \sigma_{y l_{1}} & \sigma_{\theta l_{1}} & \sigma_{l_{1}}^{2} & \sigma_{l_{l_{2}}} & \cdots & \sigma_{l_{l_{N}}} \\
\sigma_{x l_{2}} & \sigma_{y l_{2}} & \sigma_{\theta l_{2}} & \sigma_{l_{1} l_{2}} & \sigma_{l_{2}}^{2} & \cdots & \sigma_{l_{2} l_{N}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{x l_{N}} & \sigma_{y l_{N}} & \sigma_{\theta l_{N}} & \sigma_{l_{l}} & \sigma_{l_{2} l_{N}} & \cdots & \sigma_{l_{N}}^{2}
\end{array}\right)
$$

Covariance is a dense matrix that grows with increasing map features!
True robot and map states might not follow unimodal Gaussian distribution!

Particle Filtering: FastSLAM

- Particles represents samples from the posterior distribution $p\left(x_{t}, L \mid Z, U\right)$.
- $p\left(x_{t}, L \mid Z, U\right)$ can be any distribution (need not be Gaussian).

FastSLAM

Each particle represents:

$$
\begin{gathered}
p_{t}^{m}=\{x_{t}^{m},<\mu_{1, t}^{m}, \Sigma_{1, t}^{m}>,<\underbrace{\left.\mu_{2, t}^{m}, \Sigma_{2, t}^{m}>\ldots<\mu_{N, t}^{m}, \Sigma_{N, t}^{m}>\right\}}_{\begin{array}{c}
\text { Landmark state } \\
\text { (mean and covariance) }
\end{array}} \begin{array}{c}
\text { Sample the robot state from } \\
\text { the process model }
\end{array} \\
x_{t}^{m} \sim p\left(x_{t} \mid x_{t-1}, u_{t}\right) \\
p\left(L_{n, t}^{m} \mid x_{t}^{m}, z_{t}\right) \leftarrow \begin{array}{c}
\text { N Kalman filter } \\
\text { Landmark updates }
\end{array} \\
w_{t}^{m} \propto p\left(z_{t} \mid L_{t}^{m}, x_{t}^{m}\right) \longleftarrow
\end{gathered}
$$

Resampling based on current state

FastSLAM

- Many particles needed for accurate results.
- Computationally expensive for high state dimensions.

Pose-Graph SLAM

- Constraints: Relative pose estimates from 3D structure.
- Don't update 3D structure (fixed wrt. to some pose).
- Optimizes poses as $\underset{X}{\operatorname{argmin}} \sum_{i j}\|z_{i j}-\underbrace{h\left(v_{i}, v_{j}\right)}\|_{\Sigma_{i j}}^{2}$

Relative transformation between poses

- Can be used to minimize loop-closure errors.

Summary

- Bundle Adjustment
- Refine 3D points and poses in Structure-From-Motion.
- Efficient computation by exploiting structure \& sparsity.
- Core step in every Structure-From-Motion (SFM) pipeline.
- Simultaneous Localization and Mapping
- Very similar to Incremental SFM.
- Typically includes some motion model.
- Two general approaches to SLAM:
- (Local) Bundle Adjustment (not discussed in lecture)
- Filter-based techniques (EKF SLAM, FastSLAM)
- Pose-Graph SLAM (loop-closure handling)

Schedule

Feb 19	Introduction
Feb 26	Geometry, Camera Model, Calibration
Mar 4	Guest lecture + Features, Tracking / Matching
Mar 11	Project Proposals by Students
Mar 18	3DV conference
Mar 25	Structure from Motion (SfM) + papers
Apr 1	Easter break
Apr 8	Dense Correspondence (stereo / optical flow) + papers
Apr 15	Bundle Adjustment \& SLAM + papers
Apr 22	Student Midterm Presentations
Apr 29	Multi-View Stereo \& Volumetric Modeling + papers
May 6	3D Modeling with Depth Sensors + papers
May 13	Guest lecture + papers
May 20	Holiday

Next week: Midterm Presentations

Reminder:
 Prepare short presentation (3-5min) for Monday!

