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Schedule

Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration

Mar 4 Guest lecture + Features, Tracking / Matching
Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers
Apr 15 Bundle Adjustment & SLAM + papers
Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers
May 6 3D Modeling with Depth Sensors + papers
May 13 Guest lecture + papers

May 20 Holiday




3D Vision —Class 6
Bundle Adjustment and SLAM

* [Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle Adjustment — A Modern
Synthesis, Int. Workshop on Vision Algorithms, 1999]

* [Montemerio, Thrun, Koller, Wegbreit, FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping Problem, AAAI 2002]

 Section 2.5 from [Lee, Visual Mapping and Pose Estimation for Self-Driving
Cars, PhD Thesis, ETH Zurich, 2014]

Slides : Gim Hee Lee E’"



Lecture Overview

* Bundle Adjustment in Structure-from-
Motion

* Simultaneous Localization & Mapping
(SLAM)



Recap: Structure-From-Motion

* Two views initialization:
— 5-Point algorithm (Minimal Solver)
— 8-Point linear algorithm
— 7-Point algorithm




Recap: Structure-From-Motion

e Triangulation: 3D Points

SR

N




Recap: Structure-From-Motion

* Subsequent views: Perspective pose estimation




Recap: Structure-From-Motion




Bundle Adjustment

* Refinement step in Structure-from-Motion.

e Refine a visual reconstruction to produce jointly
optimal 3D structures P and camera poses C.

* Minimize total re-projection errors Az.

" Cost Function:
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Bundle Adjustment

* Refinement step in Structure-from-Motion.

e Refine a visual reconstruction to produce jointly
optimal 3D structures P and camera poses C.

* Minimize total re-projection errors Az.

" Cost Function:
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Bundle Adjustment

* Minimize the cost function: argmin f(X)
1. Gradient Descent
Newton Method

Gauss-Newton

W N

Levenberg-Marquardt



Bundle Adjustment

1. Gradient Descent

Initialization: X, = X,

> Compute gradient: g :M = AZ"WJ
Iterate until OX X=X
convergence
—— Update: X, <« X, —11g
or
J=— i - '
v Jacobian 1 : step size

Slow convergence near minimum point!

12 ETH



Bundle Adjustment

2. Newton Method

2"d order approximation (Quadratic Taylor Expansion):
F(X+0),_, = F(X)+95+38HS|

0*f (X +06)
06°

Hessian matrix:H =

X:Xk

Find & that minimizes f (X +6)

xxK



Bundle Adjustment

2. Newton Method
Differentiate and set to O gives:

S=—-H™g

Update: X, « X, +0

Computation of H is not trivial and
might get stuck at saddle point!

14



Bundle Adjustment

3. Gauss-Newton

2

=J'WJ +ZZAZUWU axg

H~J'WJ

Normal equation:

J'WIS =-J"WAZ
Update: X, < X, +0

Might get stuck and slow convergence at saddle point!

15 ETH



Bundle Adjustment

4. Levenberg-Marquardt

Regularized Gauss-Newton with damping factor 4.

("W + 21 )5 = —3"WaAz

\

. i

HLM

A — 0: Gauss-Newton (when convergence is rapid)
A — oo Gradient descent (when convergence is slow)
Adapt A during optimization:

* Decrease A when function value decreases

* Increase A otherwise



Structure of the Jacobian
and Hessian Matrices

e Sparse matrices since 3D structures are locally
observed.

Neth
graph () @
B) .
o e 14

e
1]

=
H B HEEHE

Do 00 o >
M Wb W= e K= K e

17 ETH



Efficiently Solving the Normal Equation

* Schur Complement: Exploit structure of H

H, 0 =-J"WAZ
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3D Camera
Structures  Parameters
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Efficiently Solving the Normal Equation

* Schur Complement: Exploit structure of H

H,, & =-JTWAZ

AR C DE 12 34

= mO0OD -

3D Camera
Structures Parameters
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Efficiently Solving the Normal Equation

e Schur Complement: Obtain reduced system

H,,, 0 =—J"WAZ
HS HSC 58 &s | € 3DStructures
H;_C HC 50 B Ec | = Camera Parameters
Multiply both sides b y )
Uuitl otn siaes :
. SR

H Hc Og _ €
0 HC_HgCHs_lHSC Oc gc_gsHsTcHgl

ETH



Efficiently Solving the Normal Equation

e Schur Complement: Obtain reduced system

H Hc Oq _ &g
0 HC_H-SI-CHs_lHSC Oc ‘9(:_55|_ISTCI_IS_1

First solve for O from: . . |
Easy to invert a block diagonal matrix

(He - HsTcHs_lec)5c = &¢ _gSH;—CHs_l

U

~
Schur Complement

(Sparse and Symmetric Positive Definite Matrix)

Solve for O by backward substitution.



Efficiently Solving the Normal Equation

T -1 T -1
(He —HscHs Hee)oe =6 —esHcHs™ = Ax=b
Don’t solve as x=A1b: A is sparse, but A1 is not!

e Use sparse matrix factorization to solve system

1. LU Factorization —> A=LU Solve for x by forward-
2. QR factorization —> A=0R backward substitutions

3. Cholesky Factorization — A=LL

e |terative methods

1. Conjugate gradient
2. Gauss-Seidel

: ETH



Robust Cost Function

* Non-linear least squares: argmin > Az;W;Az,
X ij
 Maximum log-likelihood solution:
argmin-In p(Z | X)
X

e Assume that:

1. Xis arandom variable that follows Gaussian distribution.
2. All observations are independent.

argmin—In p(X | Z) = argmin—ln{l_[cij exp(— AZEW”AZU )}
X X ij

=argmin > Az;W; Az,
X ij



Robust Cost Function

e Gaussian distribution assumption is not true in
the presence of outliers!

* Causes wrong convergences.



Robust Cost Function

argmin ) p; (Azij )= argmin D Az7;S;Az;

X ijf X i T

Robust Cost Function Wij scaled with,O"ij

Similar to iteratively re-weighted least-squares.

Weight is iteratively rescaled with the attenuating
factor ,0"ij .

Attenuating factor is computed based on current
error.

ETH



Robust Cost Function
o(.) p" ()

Cost function PDF Attenuation factor

h S

Squared- ‘ | Influence from
error ‘ J : 3 .
A . high errors

Gaussian Distribution
Reduced influence
from high errors

J
Cauchy ' /

Cauchy Distribution

Huber



Robust Cost Function
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State-of-the-Art Solvers

Google Ceres:

— https://code.google.com/p/ceres-solver/

glo:
— https://openslam.org/g20.html

GTSAM:
— https://collab.cc.gatech.edu/borg/gtsam/

Multicore Bundle Adjustment
— http://grail.cs.washington.edu/projects/mcba/

32


https://code.google.com/p/ceres-solver/
https://openslam.org/g2o.html
https://collab.cc.gatech.edu/borg/gtsam/
http://grail.cs.washington.edu/projects/mcba/

Lecture Overview

 Bundle Adjustment in Structure-from-
Motion

* Simultaneous Localization & Mapping
(SLAM)

33



Simultaneous Localization & Mapping
(SLAM)

* Robot navigates in unknown environment:
— Estimate its own pose
— Acquire a map model of its environment.

* Chicken-and-Egg problem:
— Map is needed for localization (pose estimation).
— Pose is needed for mapping.

* Highly related to Structure-From-Motion.



Full SLAM: Problem Definition




Full SLAM: Problem Definition

e Maximum a Posteriori (MAP) solution:

M K
argmax p(X,L|Z,U)= argmax PX)] T PO 1% U] T Pz | % 1)
) ) i=1 k=1



Full SLAM

M K
argmax p(X L|Z,U ): argxrrL]ax p(xo)H p(X; | Xi—l’ui)H P(Z [ X 1)
XL , i1 k=1

Negative log- . —argmln{ Zln p(X | X, U.)— Zm P(z, | X, | ,k)}
likelihood

Likelihoods:

P(X; | Xi_y,U;) oc exp{—H f (X, u) =X H/z\,}
?

Process model
2
P(Z, | X Ijk) oC eXp{_Hh(Xik , Ijk) — ZkHz }
r k

Measurement model

37



Full SLAM

M K
argmax p(X,L|Z,U) :argmin{—ZIn p(X | %1, U;)— > In p(z, | xik,lik)}
X,L XL i=1 k=1

Putting the likelihoods into the equation:

M K
argxrrL1ax p(X,L|Z,U)= arg!(r[]in{ZH f(x_,u)—X Hi D CTR N ZkH; }
) ) i=1 k=1

Minimization can be done with Levenberg-
Marquardt (similar to bundle adjustment problem)!

a8 ETH



Full SLAM

Normal Equations:

Weight made up of A,

QTWJ + )5 —JTWAZ

oh oh
Jacobian made up of x -

Can be solved with sparse matrix
factorization or iterative methods

Solving the full SLAM problem rather
expensive for larger scenes

39



Online SLAM: Problem Definition

* Estimate current pose X, and full map L:

p(x,L1Z,U)=[[...[ p(X,L|Z,U) dx,dx,...dx,,

Y
Previous poses are marginalized out

* Inference with:
1. (Extended) Kalman Filter (EKF SLAM)
2. Particle Filter (FastSLAM)



EKF SLAM

* Assumes: pose X, and map L are random
variables that follow Gaussian distributions.

* Hence,

p(X,L1Z,U) ~ N(x,%)

/ N\

Mean Error covariance

e (Extended) Kalman Filter iteratively

— Predicts pose & map based on process model
— Corrects prediction based on observations



EKF SLAM

Prediction:
=T, ) «——— Process model

i = tht_lFtT 4+ Rt <«——— Error propagation with process noise

Correction:
Y, =2, — h(/jt) «——— Measurement residual (innovation)
Kt :fthT(HtfthT -|-Qt)‘1 «——— Kalman gain
o=+ Ky, «——— Update mean
X, = (| _ Kth)ft <«—— Update covariance

oh(z:) Process Jacobian F, = of (U, 444)
OX, OX,_4

2 ETH

Measurement Jacobian Ht —



Structure of Mean and Covariance

Hy = ) Z“t = le1 O-yll O-Hll
Oy, Oy, Oa,
O-XIN O-Y|N O-aN

Covariance is a dense matrix that grows with increasing map features!

True robot and map states might not follow unimodal Gaussian distribution!

23 ETH



Particle Filtering: FastSLAM

Particles represents samples from the
nosterior distribution p(x,,L|Z,U) .
0(x,,L|Z,U) can be any distribution (need not
oe Gaussian).




FastSLAM

Each particle represents:

m m m m m m m m
P, :{Xt ’<:U1,t’21,t >’<\lu2,t’22,tj>"'<1uN,t’ZN,t >}

f Y

Robot state Landmark state
(mean and covariance)

m Sample the robot state from
X, ~ X | X 4,U —
t p( t | =1 t) the process model

Lm Xm 7 N Kalman filter
p( n,tl t t) Landmark updates

th oC p(Zt | Ltm,Xtm) — Weight update

Resampling based on current state

s ETH



FastSLAM

* Many particles needed for accurate results.

 Computationally expensive for high state
dimensions.



Pose-Graph SLAM

Robot pose
2
2 23 2
12 34
Measured 7 . z,
constraint \ v, ) L P )

e Constraints: Relative pose estimates from 3D structure.

Don’t update 3D structure (fixed wrt. to some pose).
. 2

. imiz argmin Hz..—h V.V, ‘
Optimizes poses as gx Zj: TN (\'{ JJ) i
Relative transformation

between poses

Can be used to minimize loop-closure errors.

7 ETH




Summary

* Bundle Adjustment
— Refine 3D points and poses in Structure-From-Motion.
— Efficient computation by exploiting structure & sparsity.
— Core step in every Structure-From-Motion (SFM) pipeline.

e Simultaneous Localization and Mapping
— Very similar to Incremental SFM.
— Typically includes some motion model.

— Two general approaches to SLAM:

* (Local) Bundle Adjustment (not discussed in lecture)
* Filter-based techniques (EKF SLAM, FastSLAM)

— Pose-Graph SLAM (loop-closure handling)



Schedule

Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration

Mar 4 Guest lecture + Features, Tracking / Matching
Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers
Apr 15 Bundle Adjustment & SLAM + papers
Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers
May 6 3D Modeling with Depth Sensors + papers
May 13 Guest lecture + papers

May 20 Holiday




Next week: Midterm Presentations

Reminder:
Prepare short presentation
(3-5min) for Monday!




