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Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration 

Mar 4 Guest lecture + Features, Tracking / Matching

Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday

Schedule



3D Vision – Class 6

Bundle Adjustment and SLAM

• [Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle Adjustment – A Modern 
Synthesis, Int. Workshop on Vision Algorithms, 1999]

• [Montemerio, Thrun, Koller, Wegbreit, FastSLAM: A Factored Solution to the 
Simultaneous  Localization and Mapping Problem, AAAI 2002]

• Section 2.5 from [Lee, Visual Mapping and Pose Estimation for Self-Driving 
Cars, PhD Thesis, ETH Zurich, 2014]

Slides : Gim Hee Lee



Lecture Overview

• Bundle Adjustment in Structure-from-
Motion

• Simultaneous Localization & Mapping 
(SLAM)
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Recap: Structure-From-Motion

• Two views initialization:

– 5-Point algorithm (Minimal Solver)

– 8-Point linear algorithm 

– 7-Point algorithm

E → (R,t)
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Recap: Structure-From-Motion

• Triangulation: 3D Points

E → (R,t)

6



Recap: Structure-From-Motion

• Subsequent views: Perspective pose estimation 

(R,t)
(R,t)

(R,t)
7



Recap: Structure-From-Motion



Bundle Adjustment

• Refinement step in Structure-from-Motion.

• Refine a visual reconstruction to produce jointly 
optimal 3D structures P and camera poses C.

• Minimize total re-projection errors     .
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Bundle Adjustment

• Minimize the cost function: 

1. Gradient Descent 

2. Newton Method

3. Gauss-Newton

4. Levenberg-Marquardt
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Bundle Adjustment

1. Gradient Descent

12

Initialization: 0XX k =

Compute gradient:

gXX kk −

( )
WJZ

X

Xf
g T

XX k

=



=

=

Update: 

Slow convergence near minimum point!

Iterate until 
convergence

: Step size
X

J



=


: Jacobian



Bundle Adjustment

2. Newton Method
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2nd order approximation (Quadratic Taylor Expansion):
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Bundle Adjustment

2. Newton Method
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Differentiate and set to 0 gives:

gH 1−−=

Computation of H is not trivial and 
might get stuck at saddle point!

Update: + kk XX



Bundle Adjustment

3. Gauss-Newton

15





+=

i j

ij

ijij

T

X
WZWJJH

2

2

WJJH T

Normal equation:

ZWJWJJ TT −=

Update: + kk XX

Might get stuck and slow convergence at saddle point!



Bundle Adjustment
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4. Levenberg-Marquardt

Regularized Gauss-Newton with damping factor     .

( ) ZWJIWJJ TT −=+ 

:0→ Gauss-Newton (when convergence is rapid)

:→ Gradient descent (when convergence is slow)

LMH

Adapt λ during optimization:
• Decrease λ when function value decreases
• Increase λ otherwise



Structure of the Jacobian
and Hessian Matrices

• Sparse matrices since 3D structures are locally 
observed. 
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Efficiently Solving the Normal Equation

• Schur Complement: Exploit structure of H
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Efficiently Solving the Normal Equation

• Schur Complement: Exploit structure of H
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Efficiently Solving the Normal Equation

• Schur Complement: Obtain reduced system
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Efficiently Solving the Normal Equation

• Schur Complement: Obtain reduced system
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Efficiently Solving the Normal Equation

• Use sparse matrix factorization to solve system

1. LU Factorization

2. QR factorization

3. Cholesky Factorization 

• Iterative methods

1. Conjugate gradient

2. Gauss-Seidel
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Robust Cost Function

• Non-linear least squares:

• Maximum log-likelihood solution:

• Assume that:
1. X is a random variable that follows Gaussian distribution.

2. All observations are independent.
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Robust Cost Function

• Gaussian distribution assumption is not true in 
the presence of outliers!

• Causes wrong convergences.
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Robust Cost Function scaled with ijW ij"

• Similar to iteratively re-weighted least-squares.

• Weight is iteratively rescaled with the attenuating 
factor        . 

• Attenuating factor is computed based on current 
error.
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Cauchy Distribution
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Reduced influence 
from high errors

Gaussian Distribution

Influence from 
high errors

Robust Cost Function



Robust Cost Function
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Outliers are taken into account in Cauchy!



State-of-the-Art Solvers

• Google Ceres:

– https://code.google.com/p/ceres-solver/

• g2o:

– https://openslam.org/g2o.html

• GTSAM:

– https://collab.cc.gatech.edu/borg/gtsam/

• Multicore Bundle Adjustment

– http://grail.cs.washington.edu/projects/mcba/
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Lecture Overview

• Bundle Adjustment in Structure-from-
Motion

• Simultaneous Localization & Mapping 
(SLAM)
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Simultaneous Localization & Mapping 
(SLAM)

• Robot navigates in unknown environment:

– Estimate its own pose

– Acquire a map model of its environment.

• Chicken-and-Egg problem:

– Map is needed for localization (pose estimation).

– Pose is needed for mapping.

• Highly related to Structure-From-Motion.
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Full SLAM: Problem Definition

35

Robot poses

Observations

Map landmarks

u1 u2 u3
Control actions



Full SLAM: Problem Definition
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Full SLAM
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Minimization can be done with Levenberg-
Marquardt  (similar to bundle adjustment problem)!
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• Estimate current pose     and full map    :

• Inference with:

1. (Extended) Kalman Filter (EKF SLAM)

2. Particle Filter (FastSLAM)

Online SLAM: Problem Definition
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EKF SLAM

• Assumes: pose     and map      are random 
variables that follow Gaussian distributions.

• Hence, 

• (Extended) Kalman Filter iteratively
– Predicts pose & map based on process model

– Corrects prediction based on observations
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Structure of Mean and Covariance
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Particle Filtering: FastSLAM

• Particles represents samples from the 
posterior distribution                       .

• can be any distribution (need not 
be Gaussian).
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FastSLAM
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FastSLAM

• Many particles needed for accurate results.

• Computationally expensive for high state 
dimensions.
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• Constraints: Relative pose estimates from 3D structure.

• Don’t update 3D structure (fixed wrt. to some pose).

• Optimizes poses as

• Can be used to minimize loop-closure errors.
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Summary

• Bundle Adjustment
– Refine 3D points and poses in Structure-From-Motion.
– Efficient computation by exploiting structure & sparsity.
– Core step in every Structure-From-Motion (SFM) pipeline.

• Simultaneous Localization and Mapping 
– Very similar to Incremental SFM.
– Typically includes some motion model.
– Two general approaches to SLAM:

• (Local) Bundle Adjustment (not discussed in lecture)
• Filter-based techniques (EKF SLAM, FastSLAM)

– Pose-Graph SLAM (loop-closure handling)
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Next week: Midterm Presentations

Reminder:
Prepare short presentation

(3-5min) for Monday!


