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Feb 19 Introduction

Feb 26 Geometry, Camera Model, Calibration 

Mar 4 Guest lecture + Features, Tracking / Matching

Mar 11 Project Proposals by Students

Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers

Apr 1 Easter break

Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday

Schedule
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Multi-View Stereo &
Volumetric Modeling
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Motivation:
3D reconstruction is hard!
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Today’s class

Modeling 3D surfaces by means of volumetric representations 
(implicit surfaces).

In particular:

• Surface representations

• Extracting a triangular mesh from an implicit voxel grid 
representation (Marching Cubes)

• Convex 3D shape modeling on a regular voxel grid

• Building a triangular mesh from a non-regular volumetric 
grid
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Surface Representations

explicit / surfaceimplicit / volumetric

• Point cloud

• Spline / 
NURBS

• Surface
Mesh

• Voxel grid
• Occupancy grid

• Signed-distance
grid

• Voxel octree

• Tetrahedral
Mesh
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Volumetric Representation

• Voxel grid: sample a volume containing the surface of 
interest uniformly

• Label each grid point as lying inside or outside the surface 

• The modeled surface is represented as an isosurface (e.g. 
SDF = 0 or OF = 0.5) of the labeling (implicit) function 

SDF = 0
SDF > 0

SDF < 0

Signed distance function Occupancy function

OF = 0.5
OF = 0

OF = 1
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Volumetric Representation

Why volumetric modeling?

• Flexible and robust surface representation

• Handles (changes of) complex surface topologies
effortlessly

• Ensures watertight surface / manifold / no self-
intersections

• Allows to sample the entire volume of interest by 
storing information about space opacity

• Voxel processing is often easily parallelizable

Drawbacks:

• Requires large amount of memory (+processing time)

• Scales badly to large scenes (cubic growth for voxels)
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From volume to mesh:
Marching Cubes

“Marching Cubes: A High Resolution 3D Surface Construction Algorithm”,
William E. Lorensen and Harvey E. Cline,
Computer Graphics (Proceedings of SIGGRAPH '87).

• March through the volume and process each voxel:

• Determine all potential intersection points of its edges 
with the desired iso-surface

• Precise localization of intersections via interpolation

• Intersection points serve as vertices of triangles:

• Connect vertices to obtain triangle mesh for the iso-
surface

• Can be done per voxel
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From volume to mesh:
Marching Cubes

Example: “Marching Squares” in 2D
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From volume to mesh:
Marching Cubes

By summarizing symmetric configurations, all possible 

28 = 256 cases reduce to:
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• The accuracy of the computed surface depends on the 
volume resolution

• Precise normal specification at each vertex possible by 
means of the implicit function (via gradient)

From volume to mesh:
Marching Cubes
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Convex 3D Modeling
“Continuous Global Optimization in Multiview 3D Reconstruction”,
Kalin Kolev, Maria Klodt, Thomas Brox and Daniel Cremers,
International Journal of Computer Vision (IJCV ‘09).

• Multiview stereo allows to compute entities of the type:

• ρ ∶ 𝑉 → [0,1] photoconsistency map reflecting the 
agreement of corresponding image projections

• 𝑓 ∶ 𝑉 → [0,1] potential function representing the costs for 
a voxel for lying inside or outside the surface

• How can these measures be integrated in a consistent 
and robust manner?
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Convex 3D Modeling

• Photoconsistency usually 
computed by matching image 
projections between different 
views

• Instead of comparing only the 
pixel colors, image patches are 
considered around each point 
to reach better robustness

• Challenges:

• Many real-world objects do not satisfy the underlying 
Lambertian assumption

• Matching is ill-posed, as there are usually a lot of different 
potential matches among multiple views

• Handling visibility
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Convex 3D Modeling

• A potential function                      can be obtained by 
fusing multiple depth maps or with a direct 3D approach

• Depth map estimation fast but errors might propagate 
during two-step method (estimation & fusion) 

• Direct approaches generally computationally more intense 
but more robust and flexible (occlusion handling, 
projective patch distortion etc.)
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Convex 3D Modeling

• Standard approach for potential function                   : 
silhouette- / visual hull-based constraints

• Problems with concavities

• Propagation scheme handles concavities

• Additional advantage: Voting for position with best 
photoconsistency defines denoised map ρ

convex hull

silhouette
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Convex 3D Modeling

Example: Middlebury “dino” data set 

ρ f

silhoutte

stereo-based

standard

denoised
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Convex 3D Modeling

• 3D modeling problem as energy minimization over volume V :

• Indicator function for interior: 

• Minimization over set of possible labels:

• Above function convex, but domain is not

• Constrained convex optimization problem by relaxation to

• Global minimum of E over Cbin can be obtained by 
minimizing over Crel and thresholding solution at some 
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Convex 3D Modeling

• Properties of Total Variation (TV)

• Preserves edges and discontinuities:

• coarea formula:
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Convex 3D Modeling

input images (2/28)

input images (2/38)
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• Benefits of the model

• High-quality 3D reconstructions of sufficiently textured 
objects possible

• Allows global optimization of problem due to convex 
formulation

• Simple construction without multiple processing stages 
and heuristic parameters

• Computational time depends only on the volume 
resolution and not on the resolution of the input 
images

• Perfectly parallelizable 

Convex 3D Modeling
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• Limitations of the model:

• Computationally intense (depending on volume 
resolution): Can easily take up 2h or more on single-
core CPU

• Need additional constraints to avoid empty surface

• Tendency to remove thin surfaces

• Problems with objects strongly violating Lambertian
surface assumption: Potential function    might be 
inaccurate

Convex 3D Modeling
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Convex 3D Modeling
“Integration of Multiview Stereo and Silhouettes via Convex Functionals
on Convex Domains”, Kalin Kolev and Daniel Cremers,
European Conference on Computer Vision (ECCV ‘08).

• Idea: Extract the silhouettes of the imaged object and 
use them as constraints to restrict the domain of 
feasible shapes
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• Leads to the following energy functional:

• denotes silhouette in image i

• denotes ray through pixel j in image i

• Solution can be obtained via relaxation and 
subsequent thresholding of result with appropriate 
threshold

Convex 3D Modeling
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Convex 3D Modeling

input images (2/24)

input images (2/27)
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Convex 3D Modeling

• Benefits of the model

• Allows to impose exact silhouette consistency

• Highly effective in suppressing noise due to the 
underlying weighted minimal surface model

• Limitations of the model

• Presumes precise object silhouettes which are not 
always easy to obtain

• The utilized minimal surface model entails a 
shrinking bias, tends to oversmooth surface details
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Convex 3D Modeling
“Anisotropic Minimal Surfaces Integrating Photoconsistency and Normal Information
for Multiview Stereo”, Kalin Kolev, Thomas Pock and Daniel Cremers,
European Conference on Computer Vision (ECCV ‘10).

• Idea: Exploit additionally surface normal information to 
counteract the shrinking bias of the weighted minimal 
surface model
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• Generalization of previous energy functional:

• Matrix mapping    defined as

• is the given normal field

• Parameter               reflects confidence in the 
surface normals

Convex 3D Modeling
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Convex 3D Modeling

input images (4/21)
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Surface Extraction from 
Point Clouds

• Techniques based on the Delaunay triangulation:

• build a Delaunay tetrahedralization of the point set

• label each tetrahedron as inside / outside

• extract the boundary → obtain a 3D mesh
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2D Example: Points / Cameras

C 1

C 2 C 3 C 4

C 5
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Delaunay Triangulation

C 1

C 2 C 3 C 4

C 5
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Delaunay Tetrahedrization

Delaunay triangulation complexity: n log(n) in 2D and n² in 3D, 

but tends to n log(n) if points are distributed on a surface.

Advantages :

⚫ no further discretization → keep the original reconstructed 

points, no discretization problem, data adaptive

⚫ compact representation → memory efficiency 
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Camera Visibility
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Labeling Tetrahedra
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Labeling Tetrahedra
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Labeling Tetrahedra
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Visibility Conflicts
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Surface Extraction
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Surface Extraction Examples



46

Extract a Mesh from the 
Triangulation

• Handles visibility

• Energy Minimization via Graph Cut

• A mesh is a graph

• Efficient to compute

• Add smoothness constraints

• Surface area

• Photoconsistency
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Visibility Reasoning
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Labeling Tetrahedra

S (outside)

T (inside)
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Additional Constraints

• Smoothing terms

• Surface area

• Photoconsistency
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Surface Extraction Results
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Surface Extraction Results
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Mesh Refinement

• Refine the geometry of the mesh based on 
minimizing a photometric error
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Semantic Mesh Refinement

Semantically Informed Multiview Surface Refinement,

Maros Blaha, Mathias Rothermel, Martin R. Oswald, Torsten Sattler, Audrey Richard, Jan D. 

Wegner, Marc Pollefeys, Konrad Schindler, ICCV 2017
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Towards a complete 
Multi-View Stereo pipeline

High Accuracy and Visibility-Consistent Dense Multi-view Stereo.  

H.-H. Vu, P. Labatut, J.-P. Pons and R. Keriven, PAMI 2012.

Structure from Motion

Bundle Adjustment

Dense Point Cloud

Mesh Extraction

Mesh Refinement
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Results from Acute3D

http://www.acute3d.com

http://www.acute3d.com
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Mar 18 3DV conference

Mar 25 Structure from Motion (SfM) + papers
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Apr 8 Dense Correspondence (stereo / optical flow) + papers

Apr 15 Bundle Adjustment & SLAM + papers

Apr 22 Student Midterm Presentations

Apr 29 Multi-View Stereo & Volumetric Modeling + papers

May 6 3D Modeling with Depth Sensors + papers

May 13 Guest lecture + papers

May 20 Holiday
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Next week:

3D Modeling with Depth Sensors


