3D Vision

Viktor Larsson, Marc Pollefeys

Spring 2019
Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 18</td>
<td>Introduction</td>
</tr>
<tr>
<td>Feb 25</td>
<td>Geometry, Camera Model, Calibration</td>
</tr>
<tr>
<td>Mar 4</td>
<td>Features, Tracking / Matching</td>
</tr>
<tr>
<td>Mar 11</td>
<td>Project Proposals by Students</td>
</tr>
<tr>
<td>Mar 18</td>
<td>Structure from Motion (SfM) + papers</td>
</tr>
<tr>
<td>Mar 25</td>
<td>Dense Correspondence (stereo / optical flow) + papers</td>
</tr>
<tr>
<td>Apr 1</td>
<td>Bundle Adjustment & SLAM + papers</td>
</tr>
<tr>
<td>Apr 8</td>
<td>Student Midterm Presentations</td>
</tr>
<tr>
<td>Apr 15</td>
<td>Multi-View Stereo & Volumetric Modeling + papers</td>
</tr>
<tr>
<td>Apr 22</td>
<td>Easter break</td>
</tr>
<tr>
<td>Apr 29</td>
<td>3D Modeling with Depth Sensors + papers</td>
</tr>
<tr>
<td>May 6</td>
<td>3D Scene Understanding + papers</td>
</tr>
<tr>
<td>May 13</td>
<td>4D Video & Dynamic Scenes + papers</td>
</tr>
<tr>
<td>May 20</td>
<td>papers</td>
</tr>
<tr>
<td>May 27</td>
<td>Student Project Demo Day = Final Presentations</td>
</tr>
</tbody>
</table>
3D Vision – Class 4

Structure from Motion

Chapter 7 in Szeliski’s Book
Chapter 9 in Hartley & Zisserman (online)
Tutorial chapters 3.2 and 4
Structure from Motion (SfM)

Rome dataset

74,394 images

Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-Motion revisited, CVPR 2016
Sequential / Incremental SfM

1. Initialize Motion
2. Initialize Structure
3. Extend Motion
4. Extend Structure
Sequential / Incremental SfM

1. Initialize Motion
 - Two view reconstruction
 - Epipolar geometry
 - Fundamental matrix F
 - Essential matrix E
 - Computing F and E

2. Initialize Structure

3. Extend Motion

4. Extend Structure
Epipolar Geometry

\[
R \quad t
\]

\[
R
\]
The Fundamental Matrix F

- Algebraic representation of epipolar geometry:
 - Projective mapping of points to lines:
 $$ x \mapsto l' \quad l' = Fx $$
 - F has rank 2 since projection
- Correspondence condition:
 - Points x, x' form correspondence $x \leftrightarrow x'$ if
 $$ x'^T l' = x'^T Fx = 0 $$
The Fundamental Matrix \mathbf{F}

- Geometric derivation:
Properties of F

F is the unique 3x3 rank 2 matrix that satisfies $x'\,^T\!Fx = 0$ for all $x \leftrightarrow x'$

(i) **Transpose:** if F is fundamental matrix for (P,P'), then F^T is fundamental matrix for (P',P)

(ii) **Epipolar lines:** $l' = Fx$ & $l = F^T\!x'$

(iii) **Epipoles:** on all epipolar lines, thus $e'^T\!Fx = 0$, $\forall x$ $\Rightarrow e'^T\!F = 0$, similarly $Fe = 0$

(iv) F has 7 d.o.f., i.e. 3x3 -1(homogeneous) -1(rank 2)

(v) F is a correlation, projective mapping from a point x to a line $l' = Fx$ (not a proper correlation, i.e. not invertible)
The Essential Matrix E

- Calibrated case: $P_1 = K_1[\mathbf{I}|\mathbf{0}]$, $P_2 = K_2[R|t]$
Properties of \mathbf{E}

\mathbf{E} is an essential matrix iff two of its singular values are equal, third is 0

• Relationship to \mathbf{F}:

• Inherits \mathbf{F}’s properties (see previous slide)
Computation of F & E

- Linear (8-point) (F & E)
- Minimal (7-point) (F & E)
- Calibrated (5-point) (only E)
Linear Solution (8-point)

- Basic epipolar equation: \(x^T F x = 0 \)
- Expand:
 \[
 x' x f_{11} + x' y f_{12} + x' f_{13} + y' x f_{21} + y' y f_{22} + y' f_{23} + x f_{31} + y f_{32} + f_{33} = 0
 \]
- Separate known and unknown variables:
 \[
 \begin{bmatrix}
 x' x, x' y, x', y' x, y', y', x, y, 1
 \end{bmatrix}
 \begin{bmatrix}
 f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}
 \end{bmatrix}^T = 0
 \]
 (data) (unknowns)
- Write as linear equation:
 \[
 \begin{bmatrix}
 x_1' x_1 & x_1' y_1 & x_1' & y_1' x_1 & y_1' y_1 & y_1' & x_1 & y_1 & 1
 \vdots & \vdots
 x_n' x_n & x_n' y_n & x_n' & y_n' x_n & y_n' y_n & y_n' & x_n & y_n & 1
 \end{bmatrix}
 \begin{bmatrix}
 f
 \end{bmatrix} = 0
 \]
- 8 unknowns (up to scale): Use 8 points
Normalized 8-point Algorithm

\[
\begin{bmatrix}
 x_1 x_1' & y_1 x_1' & x_1' & x_1 y_1' & y_1 y_1' & y_1' & x_1 & y_1 & 1 \\
 x_2 x_2' & y_2 x_2' & x_2' & x_2 y_2' & y_2 y_2' & y_2' & x_2 & y_2 & 1 \\
 \vdots & \vdots \\
 x_n x_n' & y_n x_n' & x_n' & x_n y_n' & y_n y_n' & y_n' & x_n & y_n & 1
\end{bmatrix}
\begin{bmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32} \\
 f_{33}
\end{bmatrix} = 0
\]

\(~10000 \sim 10000 \sim 100 \sim 10000 \sim 10000 \sim 100 ~1\)

\(\text{Orders of magnitude difference between column of data matrix} \rightarrow \text{least-squares yields poor results}\)

- Normalize point coordinates prior to computing \(F\)
- Same as for the normalized DLT algorithm for homography estimation (see lecture 2)
The Singularity Constraint
The Singularity Constraint

\[e'^T F = 0 \quad F e = 0 \quad \det F = 0 \quad \text{rank } F = 2 \]

- SVD from linearly computed F matrix (rank 3):
 \[
 F = U \begin{bmatrix}
 \sigma_1 \\
 \sigma_2 \\
 \sigma_3
 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T + U_3 \sigma_3 V_3^T
 \]

- Compute closest rank-2 approximation: \(\min \|F - F'\|_F \)
 \[
 F' = U \begin{bmatrix}
 \sigma_1 \\
 \sigma_2 \\
 0
 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T
 \]
The Singularity Constraint
Minimal Case: 7 Point Correspondences

• Setup linear system from 7 correspondences:

\[
\begin{bmatrix}
 x'_1 x_1 & x'_1 y_1 & x'_1 y'_1 x_1 & y'_1 y_1 & y'_1 x_1 & y_1 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 x'_7 x_7 & x'_7 y_7 & x'_7 y'_7 x_7 & y'_7 y_7 & y'_7 x_7 & y_7 & 1
\end{bmatrix} \mathbf{f} = 0
\]

• Resulting solution has 2D solution space

\[
A = U_{7 \times 7} \text{diag}(\sigma_1, \ldots, \sigma_7, 0, 0) V_{9 \times 9}^T \Rightarrow A[V_8 V_9] = 0_{9 \times 2}
\]

• \(F \) is linear combination of \(V_8 \) and \(V_9 \):

\[
x_i^T (F_1 + \lambda F_2)x_i = 0, \forall i = 1 \ldots 7
\]

• … but \(F_1 + \lambda F_2 \) not automatically rank 2
Minimal Case: 7 Point Correspondences

- Enforce rank-2 constraint from determinant:

\[
\det(F_1 + \lambda F_2) = a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 = 0
\]

- Cubic equation in \(\lambda \)
- Either 1 or 3 solutions
Calibrated Case: 5-point Solver

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003

- **Linear equations from 5 points**
 \[
 \begin{bmatrix}
 x'_1x_1 & x'_1y_1 & x'_1 & y'_1x_1 & y'_1y_1 & y'_1 & x_1 & y_1 & 1 \\
 x'_2x_2 & x'_2y_2 & x'_2 & y'_2x_2 & y'_2y_2 & y'_2 & x_2 & y_2 & 1 \\
 x'_3x_3 & x'_3y_3 & x'_3 & y'_3x_3 & y'_3y_3 & y'_3 & x_3 & y_3 & 1 \\
 x'_4x_4 & x'_4y_4 & x'_4 & y'_4x_4 & y'_4y_4 & y'_4 & x_4 & y_4 & 1 \\
 x'_5x_5 & x'_5y_5 & x'_5 & y'_5x_5 & y'_5y_5 & y'_5 & x_5 & y_5 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 E_{11} \\
 E_{12} \\
 E_{13} \\
 E_{21} \\
 E_{22} \\
 E_{23} \\
 E_{31} \\
 E_{32} \\
 E_{33} \\
 \end{bmatrix} = 0
 \]

- **4D linear solution space:**
 \[
 E = xX + yY + zZ + wW \quad \text{scale does not matter, choose } w = 1
 \]

- **Insert into non-linear constraints**
 \[
 \det E = 0 \\
 2EE^T E - tr(EE^T) E = 0.
 \]
 \[
 \begin{cases}
 10 \text{ cubic polynomials}
 \end{cases}
 \]
 (assumes normalized coordinates)
Calibrated Case: 5-point Solver

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, CVPR 2003

- Perform Gauss-Jordan elimination on polynomials

$$[n]$$ represents polynomial of degree $$n$$ in $$z$$

$$\langle e \rangle - z \langle f \rangle$$
$$\langle g \rangle - z \langle h \rangle$$
$$\langle i \rangle - z \langle j \rangle$$

$$\langle n \rangle \equiv \text{det}(B)$$
Automatic Computation of F

Step 1. Extract features
Step 2. Compute a set of potential matches
Step 3. Robust estimation of F via RANSAC
Step 4. Compute F based on all inliers
Step 5. Look for additional matches
Step 6. Refine F based on all correct matches
RANdom SAmple Consensus (RANSAC)

• Problem: Estimate F in presence of wrong matches

• RANSAC algorithm:
 • Repeat:
 • Randomly select minimal sample (5 or 7 points)
 • Compute hypothesis for F from minimal sample
 • Verify hypothesis: Count inliers
 • Until probability of finding better solution $< \eta$

<table>
<thead>
<tr>
<th>#inliers</th>
<th>90%</th>
<th>80%</th>
<th>70%</th>
<th>60%</th>
<th>50%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#samples (5)</td>
<td>5</td>
<td>12</td>
<td>25</td>
<td>57</td>
<td>145</td>
<td>14k</td>
</tr>
<tr>
<td>#samples (7)</td>
<td>7</td>
<td>20</td>
<td>54</td>
<td>162</td>
<td>587</td>
<td>359k</td>
</tr>
</tbody>
</table>

$\eta=0.01\%$
Finding More Matches

• Restricted search around epipolar line (e.g. ±1.5 pixels)
• Relax disparity restriction (along epipolar line)
Want to Know More?

http://danielwedge.com/fmatrix/
Sequential / Incremental SfM

1. Initialize Motion
 - Initialize motion from F or E
 - Triangulate structure from motion

2. Initialize Structure

3. Extend Motion

4. Extend Structure
Initial Motion and Structure Estimation (Calibrated Case)

- Recap Essential matrix: $E = [t]_x R$
- Motion for two cameras: $[I|0], [R|t]$
- Essential Matrix decomposition: $E = U \Sigma V^T$

 $$
 \Sigma = \begin{pmatrix}
 s & 0 & 0 \\
 0 & s & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \quad
 W = \begin{pmatrix}
 0 & -1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \quad
 W^{-1} = W^T = \begin{pmatrix}
 0 & 1 & 0 \\
 -1 & 0 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 $$

- Recover E and t as
 - $t = u_3$ or $t = -u_3$
 - $R = UWV^T$ or $R = UW^TV^T$
- Four solutions, but only one meaningful

(see Hartley and Zisserman, Sec.9.6)
Using the Cheirality Constraint

(see Hartley and Zisserman, Sec. 9.6)
Given: Motion, correspondence

Estimate 3D point via triangulation
Triangulation

- Backprojection

\[\lambda x = Px \]

\[P_3Xx = P_1X \]

\[P_3Xy = P_2X \]

\[
\begin{bmatrix}
\lambda x \\
\lambda y \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix}
X
\]

\[
\begin{bmatrix}
P_3x - P_1 \\
P_3y - P_2
\end{bmatrix}
X = 0
\]

- Triangulation

\[
\begin{bmatrix}
P_3x - P_1 \\
P_3y - P_2 \\
P_3'x' - P_1' \\
P_3'y' - P_2'
\end{bmatrix}
X = 0
\]

- Maximum Likelihood Triangulation (geometric error)

\[
\arg \min_X \sum_i \left(x_i - \lambda^{-1} P_i X \right)^2
\]
Optimal 3D Point in Epipolar Plane

- Given an epipolar plane, find best 3D point for \((m_1, m_2)\)

- Select closest points \((m_1', m_2')\) on epipolar lines
- Obtain 3D point through exact triangulation
- Guarantees minimal reprojection error (given this epipolar plane)
Optimal Two-View Triangulation

- **Non-iterative method:** (Hartley and Sturm, CVIU´97)
 - Determine optimal epipolar plane for reconstruction
 - \[D(m_1, l_1(\alpha))^2 + D(m_2, l_2(\alpha))^2 \] (polynomial of degree 6)
 - Reconstruct optimal point from selected epipolar plane
 - Note: Only works for two views

\[\begin{align*}
 &l_1(\alpha) \quad m_1 \\
 &m_2 \quad l_2(\alpha)
\end{align*} \]

1 DOF
Sequential / Incremental SfM

1. Initialize Motion
 - Find camera with matches to previous images
 - Matches define 2D-3D correspondences
 - Estimate camera pose wrt. 3D structure

2. Initialize Structure

3. Extend Motion

4. Extend Structure
Pose Estimation from 2D-3D Matches

\[x_i = P_i X(x_1, \ldots, x_{i-1}) \]

Compute \(P_{i+1} \) using robust approach (6-point RANSAC)
Extend and refine reconstruction
Compute P with 6-point RANSAC

- Generate hypothesis using 6 points

\[
\begin{bmatrix}
0^\top & -w_i X_i^\top & y_i X_i^\top \\
w_i X_i^\top & 0^\top & -x_i X_i^\top
\end{bmatrix}
\begin{pmatrix}
P^1 \\
P^2 \\
P^3
\end{pmatrix} = 0
\]

(two equations per point)

- Planar scenes are degenerate!

(similar DLT algorithm as see in 2nd lecture for homographies)
3-Point-Perspective Pose – P3P (Calibrated Case)

All techniques yield 4th order polynomial

Incremental SfM

- **Initialize:**
 - Compute pairwise epipolar geometry
 - Find pair to initialize structure and motion

- **Repeat:**
 - For each additional view
 - Determine pose from structure
 - Extend structure
 - Refine structure and motion (bundle adjustment, see lecture 7)
Global SfM

- **Initialize:**
 - Compute pairwise epipolar geometry

- **Compute:**
 - Estimate all orientations
 - Estimate all positions
 - Triangulate structure
 - Refine structure and motion (bundle adjustment)

- **Pros:** More efficient, more accurate
- **Con:** Less robust
SfM Software

- **Colmap** (Johannes Schönberger)
 - Incremental SfM, very efficient, nice GUI, open source

- **VisualSFM** (Changchang Wu)
 - Incremental SfM, very efficient, GUI, binaries

- **Bundler** (Noah Snavely)
 - Incremental SfM, open source

- **OpenMVG** (Pierre Moulon)
 - Incremental and Global SfM, open source

- **Theia** (Chris Sweeney)
 - Incremental and Global SfM, very efficient, open source
Next week:
Dense Correspondence / Stereo