3D Vision

Marc Pollefeys, Viktor Larsson

Spring 2019
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 18</td>
<td>Introduction</td>
</tr>
<tr>
<td>Feb 25</td>
<td>Geometry, Camera Model, Calibration</td>
</tr>
<tr>
<td>Mar 4</td>
<td>Features, Tracking / Matching</td>
</tr>
<tr>
<td>Mar 11</td>
<td>Project Proposals by Students</td>
</tr>
<tr>
<td>Mar 18</td>
<td>Structure from Motion (SfM) + papers</td>
</tr>
<tr>
<td>Mar 25</td>
<td>Dense Correspondence (stereo / optical flow) + papers</td>
</tr>
<tr>
<td>Apr 1</td>
<td>Bundle Adjustment & SLAM + papers</td>
</tr>
<tr>
<td>Apr 8</td>
<td>Student Midterm Presentations</td>
</tr>
<tr>
<td>Apr 15</td>
<td>Multi-View Stereo & Volumetric Modeling + papers</td>
</tr>
<tr>
<td>Apr 22</td>
<td>Easter break</td>
</tr>
<tr>
<td>Apr 29</td>
<td>3D Modeling with Depth Sensors + papers</td>
</tr>
<tr>
<td>May 6</td>
<td>3D Scene Understanding + papers</td>
</tr>
<tr>
<td>May 13</td>
<td>4D Video & Dynamic Scenes + papers</td>
</tr>
<tr>
<td>May 20</td>
<td>papers</td>
</tr>
<tr>
<td>May 27</td>
<td>Student Project Demo Day = Final Presentations</td>
</tr>
</tbody>
</table>
3D Vision – Class 6
Bundle Adjustment and SLAM

- [Montemerio, Thrun, Koller, Wegbreit, FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, AAAI 2002]
- Section 2.5 from [Lee, Visual Mapping and Pose Estimation for Self-Driving Cars, PhD Thesis, ETH Zurich, 2014]

Slides : Gim Hee Lee
Lecture Overview

• Bundle Adjustment in Structure-from-Motion

• Simultaneous Localization & Mapping (SLAM)
Recap: Structure-From-Motion

• Two views initialization:
 – 5-Point algorithm (Minimal Solver)
 – 8-Point linear algorithm
 – 7-Point algorithm
Recap: Structure-From-Motion

- Triangulation: 3D Points

\[E \to (R,t) \]
Recap: Structure-From-Motion

• Subsequent views: Perspective pose estimation
Recap: Structure-From-Motion
Bundle Adjustment

• Refinement step in Structure-from-Motion.
• Refine a visual reconstruction to produce jointly optimal 3D structures P and camera poses C.
• Minimize total re-projection errors Δz.

Cost Function:

$$\underset{X}{\text{argmin}} \sum_i \sum_j \left\| x_{ij} - \pi(P_j, C_i) \right\|^2_{W_{ij}}$$

$$X = [P, C]$$
Bundle Adjustment

- Refinement step in Structure-from-Motion.
- Refine a visual reconstruction to produce jointly optimal 3D structures P and camera poses C.
- Minimize total re-projection errors Δz.

Cost Function:

$$\arg\min_X \sum_i \sum_j \Delta z_{ij}^T W_{ij} \Delta z_{ij}$$

W_{ij}^{-1}: Measurement error covariance

$$X = [P, C]$$
Bundle Adjustment

• Minimize the cost function: $\arg\min_X f(X)$
 1. Gradient Descent
 2. Newton Method
 3. Gauss-Newton
 4. Levenberg-Marquardt
Bundle Adjustment

1. Gradient Descent

Initialization: $X_k = X_0$

Compute gradient: $g = \frac{\partial f(X)}{\partial X} \bigg|_{X=X_k} = \Delta Z^T W J$

Update: $X_k \leftarrow X_k - \eta g$

$J = \frac{\partial \pi}{\partial X}$: Jacobian

η : Step size

Slow convergence near minimum point!
Bundle Adjustment

2. Newton Method

2^{nd} order approximation (Quadratic Taylor Expansion):

$$ f(X + \delta)|_{X=X_K} \approx f(X) + g\delta + \frac{1}{2} \delta^T H \delta |_{X=X_K} $$

Hessian matrix: $H = \frac{\partial^2 f(X + \delta)}{\partial \delta^2} |_{X=X_k}$

Find δ that minimizes $f(X + \delta)|_{X=X_K}$!
Bundle Adjustment

2. Newton Method

Differentiate and set to 0 gives:

$$\delta = -H^{-1}g$$

Update: $$X_k \leftarrow X_k + \delta$$

Computation of H is not trivial and might get stuck at saddle point!
Bundle Adjustment

3. Gauss-Newton

\[H = J^T W J + \sum_i \sum_j \Delta Z_{ij} W_{ij} \frac{\partial^2 \pi_{ij}}{\partial \mathbf{X}^2} \]

\[H \approx J^T W J \]

Normal equation:

\[J^T W J \delta = -J^T W \Delta \mathbf{Z} \]

Update: \(X_k \leftarrow X_k + \delta \)

Might get stuck and slow convergence at saddle point!
Bundle Adjustment

4. Levenberg-Marquardt

Regularized Gauss-Newton with damping factor λ.

$$\left(J^T W J + \lambda I\right) \delta = -J^T W \Delta Z$$

H_{LM}

$\lambda \rightarrow 0$: Gauss-Newton (when convergence is rapid)

$\lambda \rightarrow \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

- Decrease λ when function value decreases
- Increase λ otherwise
Structure of the Jacobian and Hessian Matrices

- Sparse matrices since 3D structures are locally observed.

\[
J = \begin{pmatrix}
\begin{array}{cccc}
A1 & A2 & B1 & B2 & B3 & B4 \\
A1 & A2 & C1 & C2 & C3 & C4 \\
A1 & A2 & D1 & D2 & D3 & D4 \\
A1 & A2 & E1 & E2 & E3 & E4
\end{array}
\end{pmatrix}
\]
Efficiently Solving the Normal Equation

- Schur Complement: Exploit structure of H

\[
H_{LM} \delta = -J^T W \Delta Z
\]
Efficiently Solving the Normal Equation

- Schur Complement: Exploit structure of H

$$H_{LM} \delta = -J^T W \Delta Z$$
Efficiently Solving the Normal Equation

• Schur Complement: Obtain reduced system

\[H_{LM} \delta = -J^T W \Delta Z \]

\[
\begin{bmatrix}
H_S & H_{SC} \\
H_{SC}^T & H_C
\end{bmatrix}
\begin{bmatrix}
\delta_S \\
\delta_C
\end{bmatrix} =
\begin{bmatrix}
\epsilon_S \\
\epsilon_C
\end{bmatrix}
\]

Multiply both sides by:

\[
\begin{bmatrix}
I & 0 \\
-H_{SC}^T H_S^{-1} & I
\end{bmatrix}
\]

\[
\begin{bmatrix}
H_S & H_{SC} \\
0 & H_C - H_{SC}^T H_S^{-1} H_{SC}
\end{bmatrix}
\begin{bmatrix}
\delta_S \\
\delta_C
\end{bmatrix} =
\begin{bmatrix}
\epsilon_S \\
\epsilon_C - \epsilon_S H_{SC}^T H_S^{-1}
\end{bmatrix}
\]

3D Structures
Camera Parameters
Efficiently Solving the Normal Equation

• Schur Complement: Obtain reduced system

\[
\begin{bmatrix}
H_S & H_{SC} \\
0 & H_C - H_{SC}^T H_S^{-1} H_{SC}
\end{bmatrix}
\begin{bmatrix}
\delta_S \\
\delta_C
\end{bmatrix} = \begin{bmatrix}
\varepsilon_S \\
\varepsilon_C - \varepsilon_S H_{SC}^T H_S^{-1}
\end{bmatrix}
\]

First solve for \(\delta_C \) from:

\[
(H_C - H_{SC}^T H_S^{-1} H_{SC})\delta_C = \varepsilon_C - \varepsilon_S H_{SC}^T H_S^{-1}
\]

Schur Complement
(Sparse and Symmetric Positive Definite Matrix)

Solve for \(\delta_{SC} \) by backward substitution.
Efficiently Solving the Normal Equation

\[(H_C - H_{sc}^T H_s^{-1} H_{sc}) \delta_C = \varepsilon_C - \varepsilon_s H_{sc}^T H_s^{-1} \quad \equiv \quad Ax = b\]

Don’t solve as \(x=\mathbf{A}^{-1}\mathbf{b}\): \(\mathbf{A}\) is sparse, but \(\mathbf{A}^{-1}\) is not!

• Use sparse matrix factorization to solve system

 1. LU Factorization \(A = LU\)
 2. QR factorization \(A = QR\)
 3. Cholesky Factorization \(A = LL^T\)

• Iterative methods

 1. Conjugate gradient
 2. Gauss-Seidel
Problem of Fill-In

Hessian

Natural Cholesky
Problem of Fill-In

• Reorder sparse matrix to minimize fill-in.

\[(P^T A P)(P^T x) = P^T b\]

Permutation matrix to reorder \(A\)

• NP-Complete problem.

• Approximate solutions:
 1. Minimum degree
 2. Column approximate minimum degree permutation
 3. Reverse Cuthill-McKee.
 4. ...
Problem of Fill-In
Robust Cost Function

• Non-linear least squares: \(\arg\min_X \sum_{ij} \Delta z_{ij}^T W_{ij} \Delta z_{ij} \)

• Maximum log-likelihood solution:

\[
\arg\min_X -\ln p(Z \mid X) = \arg\min_X -\ln \left(\prod_{ij} c_{ij} \exp(-\Delta z_{ij}^T W_{ij} \Delta z_{ij}) \right)
\]

\[
= \arg\min_X \sum_{ij} \Delta z_{ij}^T W_{ij} \Delta z_{ij}
\]

• Assume that:

1. \(X \) is a random variable that follows Gaussian distribution.
2. All observations are independent.
Robust Cost Function

• Gaussian distribution assumption is not true in the presence of outliers!
• Causes wrong convergences.
Robust Cost Function

\[\arg\min_x \sum_{ij} \rho_{ij}(\Delta z_{ij}) = \arg\min_x \sum_{ij} \Delta z_{ij}^T S_{ij} \Delta z_{ij} \]

- Similar to iteratively re-weighted least-squares.
- Weight is iteratively rescaled with the attenuating factor \(\rho_{ij}'' \).
- Attenuating factor is computed based on current error.
Robust Cost Function

\[\rho(.) \]

<table>
<thead>
<tr>
<th></th>
<th>(\rho(.))</th>
<th>(\rho''(.))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuation factor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Squared-error**
 - Gaussian Distribution
 - Influence from high errors

- **Cauchy**
 - Cauchy Distribution
 - Reduced influence from high errors

- **Huber**
Robust Cost Function

Outliers are taken into account in Cauchy!
State-of-the-Art Solvers

• Google Ceres:
 – https://code.google.com/p/ceres-solver/

• g2o:
 – https://openslam.org/g2o.html

• GTSAM:
 – https://collab.cc.gatech.edu/borg/gtsam/

• Multicore Bundle Adjustment
Lecture Overview

• Bundle Adjustment in Structure-from-Motion

• Simultaneous Localization & Mapping (SLAM)
Simultaneous Localization & Mapping (SLAM)

• Robot navigates in unknown environment:
 – Estimate its own pose
 – Acquire a map model of its environment.

• Chicken-and-Egg problem:
 – Map is needed for localization (pose estimation).
 – Pose is needed for mapping.

• Highly related to Structure-From-Motion.
Full SLAM: Problem Definition

- Robot poses
- Observations
- Map landmarks
- Control actions
Full SLAM: Problem Definition

• Maximum a Posteriori (MAP) solution:

\[
\begin{align*}
\arg\max_{X,L} p(X,L | Z,U) &= \arg\max_{X_L} p(X_0) \prod_{i=1}^{M} p(x_i | x_{i-1}, u_i) \prod_{k=1}^{K} p(z_k | x_{ik}, l_{jk}) \\
\end{align*}
\]
Full SLAM

\[\arg \max_{X,L} p(X,L \mid Z,U) = \arg \max_{X,L} p(X_0) \prod_{i=1}^{M} p(x_i \mid x_{i-1}, u_i) \prod_{k=1}^{K} p(z_k \mid x_{ik}, l_{jk}) \]

Negative log-likelihood

\[= \arg \min_{X,L} \left\{ - \sum_{i=1}^{M} \ln p(x_i \mid x_{i-1}, u_i) - \sum_{k=1}^{K} \ln p(z_k \mid x_{ik}, l_{jk}) \right\} \]

Likelihoods:

\[p(x_i \mid x_{i-1}, u_i) \propto \exp\left\{ -\|f(x_{i-1}, u) - x_i\|_\Lambda_i^2 \right\} \]

Process model

\[p(z_k \mid x_{ik}, l_{jk}) \propto \exp\left\{ -\|h(x_{ik}, l_{jk}) - z_k\|_{\Sigma_k}^2 \right\} \]

Measurement model
Full SLAM

\[
\argmax_{X,L} p(X,L \mid Z,U) = \argmin_{X,L} \left\{ -\sum_{i=1}^{M} \ln p(x_i \mid x_{i-1}, u_i) - \sum_{k=1}^{K} \ln p(z_k \mid x_{ik}, l_{ik}) \right\}
\]

Putting the likelihoods into the equation:

\[
\argmax_{X,L} p(X,L \mid Z,U) = \argmin_{X,L} \left\{ \sum_{i=1}^{M} \| f(x_{i-1}, u_i) - x_i \|_{\Lambda_i}^2 + \sum_{k=1}^{K} \| h(x_{ik}, l_{ik}) - z_k \|_{\Sigma_k}^2 \right\}
\]

Minimization can be done with Levenberg-Marquardt (similar to bundle adjustment problem)!
Full SLAM

Normal Equations:

\[(J^T W J + \lambda I)\delta = -J^T W \Delta Z\]

Jacobian made up of \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}, \frac{\partial h}{\partial x}, \frac{\partial h}{\partial l}\)

Weight made up of \(\Lambda_i, \Sigma_k\)

Can be solved with sparse matrix factorization or iterative methods

Solving the full SLAM problem rather expensive for larger scenes
Online SLAM: Problem Definition

• Estimate current pose x_t and full map L:

$$p(x_t, L | Z, U) = \int \int \ldots \int p(X, L | Z, U) \, dx_1 \, dx_2 \ldots dx_{t-1}$$

Previous poses are marginalized out

• Inference with:
 1. (Extended) Kalman Filter (EKF SLAM)
 2. Particle Filter (FastSLAM)
EKF SLAM

• Assumes: pose x_t and map L are random variables that follow Gaussian distributions.
• Hence,

$$p(x_t, L | Z, U) \sim N(\mu, \Sigma)$$

• (Extended) Kalman Filter iteratively
 – Predicts pose & map based on process model
 – Corrects prediction based on observations
EKF SLAM

Prediction:
\[\bar{\mu}_t = f(u_t, \mu_{t-1}) \]
\[\bar{\Sigma}_t = F_t \Sigma_{t-1} F_t^T + R_t \]

Correction:
\[y_t = z_t - h(\bar{\mu}_t) \]
\[K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1} \]
\[\mu_t = \bar{\mu}_t + K_t y_t \]
\[\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t \]

Measurement Jacobian
\[H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t} \]

Process Jacobian
\[F_t = \frac{\partial f(u_t, \mu_{t-1})}{\partial x_{t-1}} \]
Covariance is a dense matrix that grows with increasing map features!

True robot and map states might not follow unimodal Gaussian distribution!
Particle Filtering: FastSLAM

• Particles represents samples from the posterior distribution $p(x_t, L | Z, U)$.

• $p(x_t, L | Z, U)$ can be any distribution (need not be Gaussian).
FastSLAM

Each particle represents:

\[
p^m_t = \{x^m_t, < \mu^m_{1,t}, \Sigma^m_{1,t} >, < \mu^m_{2,t}, \Sigma^m_{2,t} > ... < \mu^m_{N,t}, \Sigma^m_{N,t} > \}
\]

Robot state

Landmark state
(mean and covariance)

\[
x^m_t \sim p(x_t | x_{t-1}, u_t)
\]

Sample the robot state from the process model

\[
p(L^m_n,t | x^m_t, z_t)
\]

N Kalman filter
Landmark updates

\[
w^m_t \propto p(z_t | L^m_t, x^m_t)
\]

Weight update

Resampling based on current state
FastSLAM

• Many particles needed for accurate results.
• Computationally expensive for high state dimensions.
• Constraints: Relative pose estimates from 3D structure.
• Don’t update 3D structure (fixed wrt. to some pose).
• Optimizes poses as $\text{argmin}_X \sum_{ij} \| z_{ij} - h(v_i, v_j) \|^2_{\Sigma_{ij}}$
• Can be used to minimize loop-closure errors.
Summary

• **Bundle Adjustment**
 – Refine 3D points and poses in Structure-From-Motion.
 – Efficient computation by exploiting structure & sparsity.
 – Core step in every Structure-From-Motion (SFM) pipeline.

• **Simultaneous Localization and Mapping**
 – Very similar to Incremental SFM.
 – Typically includes some motion model.
 – Two general approaches to SLAM:
 • (Local) Bundle Adjustment (not discussed in lecture)
 • Filter-based techniques (EKF SLAM, FastSLAM)
 – Pose-Graph SLAM (loop-closure handling)
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 18</td>
<td>Introduction</td>
</tr>
<tr>
<td>Feb 25</td>
<td>Geometry, Camera Model, Calibration</td>
</tr>
<tr>
<td>Mar 4</td>
<td>Features, Tracking / Matching</td>
</tr>
<tr>
<td>Mar 11</td>
<td>Project Proposals by Students</td>
</tr>
<tr>
<td>Mar 18</td>
<td>Structure from Motion (SfM) + papers</td>
</tr>
<tr>
<td>Mar 25</td>
<td>Dense Correspondence (stereo / optical flow) + papers</td>
</tr>
<tr>
<td>Apr 1</td>
<td>Bundle Adjustment & SLAM + papers</td>
</tr>
<tr>
<td>Apr 8</td>
<td>Student Midterm Presentations</td>
</tr>
<tr>
<td>Apr 15</td>
<td>Multi-View Stereo & Volumetric Modeling + papers</td>
</tr>
<tr>
<td>Apr 22</td>
<td>Easter break</td>
</tr>
<tr>
<td>Apr 29</td>
<td>3D Modeling with Depth Sensors + papers</td>
</tr>
<tr>
<td>May 6</td>
<td>3D Scene Understanding + papers</td>
</tr>
<tr>
<td>May 13</td>
<td>4D Video & Dynamic Scenes + papers</td>
</tr>
<tr>
<td>May 20</td>
<td>papers</td>
</tr>
<tr>
<td>May 27</td>
<td>Student Project Demo Day = Final Presentations</td>
</tr>
</tbody>
</table>
Next week: Midterm Presentations

Reminder: Prepare short presentation (3-5min) for Monday!